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ABSTRACT

Analytical studies have been made of laminar film condensation on a horizontal

elliptical cylinder in a pure saturated vapor under conditions of free and forced convection.

Estimation of interfacial shear stress was made in two ways: the first involving an asymptotic

value of the shear stress under conditions of infinite condensation rate and the second based

on simultaneously solving the two-phase vapor boundary layer and condensate equations. The

latter approach enables the determination of the vapor boundary layer separation point. For

the assumption of asymptotic shear stress, effects of surface tension and pressure gradient in

the condensatt. film have also been included. At the extremes of eccentricity, corresponding

to a circular tube and a vertical flat plate, the results are compared with theoretical and

experimental work of others. Improvement in the condensation heat transfer coefficient was

found for elliptical tubes under both free and forced convection conditions when compared

to circular tubes of the same surface area. In the latter case, this improvement was due mainly

to the reduced drag of the elliptical tube providing a higher vapor velocity for the same

pressure drop as that across a circular tube.
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NOMENCLATURE

a semi-major axis dimension

AC tube cross-sectional area

b semi-minor axis dimension

B1  as defined by Equation (11-35)

82 as defined by Equation (11-52)

Bo Bond number (plgDe2 / o)

De effective diameter defined by Equation (11-16)

f(K,'X) shear function defined by Equation (11-104)

F dimensionless parameter defined by Equation (11-64)

f( gravity function defined by Equation (11-21)

f2 potential velocity function defined by Equation (11-47)

f3 pressure gradient function defined by Equation (11-76)

f4(40) surface tension function defined by Equation (11-80)

g gravitational constant

G dimensionless parameter defined by Equation (Il-111)

H(K,x 1 ) shape function defined by Equation (11-104)

hfg latent heat of evaporation

k elliptical tube eccentricity (b/a)

m condensate mass flux rate

Nu Nusselt number (aDe/ A1)

p fluid pressure

pO fluid pressure due to potential flow

pa fluid pressure due to surface tension

P dimensionless parameter defined by Equation (11-85)

r radial dimension, cylindical coordinate system
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R(4) radius of curvature

re two-phase Reynold, ,•amber (pjU.De/Tri)

Re, vapor Reyno&', number (pvU.De/tlv)

Twall tube wall temperature

Tsat vapor saturation temperature

u condensate film streamwise velocity

U vapor boundary-layer streamwise velocity

um mean condensate film streamwise velocity

UO vapor potential velocity outside boundary-layer

0, dimensionless vapor potential velocity defined by Equation (11-108)

U. vapor free-stream velocity

v condensate film normal velocity

V vapor boundary-layer normal velocity

V 6  vapor interfacial normal velocity

V6 dimensionless vapor interfacial velocity defined by Equation (11-108)

x streamwise length dimension, curvilinear coordinate system

xi coordinate, cartesian coordinate system

x dimensionless streamwise length defined by Equation (11-17)

xs" dimensi aiess streamwise vapor boundary-layer separation location

y normal length dimension, curvilinear coordinate system

Yi coordinate, cartesian coordinate system

Z dimensionless parameter defined by Equation (11-105)

Zt dimensionless parameter defined by Equation (11-34)

Z2 dimensionless parameter defined by Equation (11-51)

a heat transfer coefficient

A vapor boundary-layer thickness

x



a• vapor boundary-layer displacement thickness

A' vapor boundary-layer momentum thickness

8 condensate film thickness

a dimensionless condensate film thickness defined by Equation (11-64)

T) dynamic viscosity

0 angular coordinate, cylindrical coordinate system

K pressure gradient parameter defined by Equation (11-103)

Kt suction parameter defined by Equation (11-103)

KA parameter defined by Equation (11-118)

. thermal conductivity

p fluid mass density

o fluid surface tension

fluid shear stress

T6 condensate/vapor interfacial shear stress

T'6 dimensionless interfacial shear stress defined by Equation (11-119,120)

4 parametric angle

X(W) parametric radius defined by Equation (11-15)

SUBSCRIPTS

8 vapor/condensate interface

I condensate

v vapor

xi
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1. INTRODUCTION

A. MOTIVATION FOR INVESTIGATION OF ELLIPTICAL TUBES

For many years, condenser design in the United States has been based on the Heat

Exchange Institute (H.E.I.) or Tubular Exchange Manufacturers Association (T.E.M.A.)

standards (1,2] which rely on tube-side empirical relations and averaged data to predict

heat transfer parameters. Since there is a large degree of uncertainty in the accuracy

of the prediction, the condensers are over designed to ensure sufficient margin of

reliability. The result is an excessively large, expensive condenser for the desired

thermal duty rating requirements. The majority of condensers currently used in the

Navy were designed under these standards.

Within the last two decades, computer modeling has been used to more accurately

predict the heat-transfer coefficients of condensers. There are two basic approaches to

computer modelling, an integrated and a differential approach, of which the former is

most commonly used in condenser design (Walker [31). Integrated approaches divide the

condenser into zones with associated mean heat transfer and fluid properties which are

typically determined from semi-empirical relations. These zones are integrated over the

whole condenser and provide overall performance predictions with respect to shell side

pressure drop and duty rating. Though easy to use, integrated methods are restrictive

when used in conditions which are outside of the fluid parameter and geometry

constraints of the empirical relations employed in the approach. Differential

approaches solve the basic equations of fluid mechanics and heat transfer and provide

an understanding of local variations within the condenser, but are too complex for use

in condenser design. The improvements in accuracy as a rsult of computer design
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methods are a function of the empirical or theoretical models used in their development.

Marto [41 provides a comprehensive overview of the state of computer design methods.

The purpose of empirical and theoretical research into condenser performance is

to more accurately predict condenser characteristics such that the designer can develop

reliable, smaller, and hence less costly condensers which meet the same thermal duty

requirements. Analyses of single tubes allow isolation of individual factors which

affect condensation without the complexities which result from vapor flow over tube

bundles or condensate inundation. Since the pioneering work of Nusselt [51, a

significant amount of theoretical work has been done analyzing laminar film

condensation on horizontal circular tubes (see Rose 161), the results of which have

greatly contributed to the ability to reasonably predict single tube heat transfer

performance.

Over the last two decades, major effort has been expended to study effects which

enhance laminar film condensation heat transfer over that obtained from a plain

circular tube. The majority of these techniques have focussed on controlling the

thickness of the condensate film as this is the major resistance to heat transfer. The

condensate film thickness generally increases with streamwise distance from the top of

the tube and is dependent on both the rate of condensation and the interfacial shear

between the vapor boundary-layer and condensate film. Additionally, at high vapor

velocities, vapor boundary-layer separation occurs which results in a rapid thickening

of the condensate film downstream of the separation point. Enhancement techniques

include, but are not limited to, extended surfaces (fins), profiled tube surfaces (roped

or corrugated tubes), and non-circular tube geometries. Marto [71, Bergles et al. 181 and

Webb [91 provide comprehensive reviews on such enhancement techniques. These

techniques enhance heat transfer through an increase in surface area to volume ratio

and/or the use of surface tension to thin the condensate film.
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Non-circular geometries contribute to a thinning of the condensate film by placing

more of the surface in line with the direction of gravity; thus, making the average

streamwise gravity component in the momentum balance of the condensate film larger

than that obtained from a circular geometry. Dhir and Lienhard [10] applied a simple

Nusselt type analysis to an arbitrary plane or axisymmetric body in which the

streamwise gravity component varied with streamwise length. The results of this

analysis gave expressions for condensate film thickness and Nusselt number which were

identical to those derived by Nusselt except that the gravitational constant, g, is

replaced by an effective constant, geff, which is defined by

ge - x (g R)40

fog '
1tR4dx

where x is the streamwise distance from the leading edge of the surface and R is the

radius of curvature of the axisymmetric body. These expressions can only be applied

to systems for which curvilinear coordinates are applicable, i.e., for bodies in which the

radii of curvature are much greater than the film thickness.

Shklover and co-workers [11,121 analyzed a horizontal cylinder with a logarithmic

spiral type of surface curvature (see Figure 1-1) such that more of the body surface is

aligned in the direction of gravity and the radius of curvature is continuously

increasing along the streamwise direction. They manufactured this tube by "mechanical

deformation of a circular tube." The effect of this profile was to increase the

streamwise effective gravity component over that found for a circular cylinders and

to utilize surface tension effects on the pressure gradient to increase the mean film

velocity, u(x,y), in the streamwise direction. Their analysis considered viscous, gravity

and surface tension forces in the momentum balance of the condensate film and

neglected vapor shear at the condensate/vapor interface. These effects resulted in a

3
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Figure 1-1. Logarithmic Spiral Tube from Reference [121.

thinning of the condensate film and an increase of 20-30% in the overall heat-transfer

coefficient when compared to a circular tube of the same surface area. These results

agreed with experimental data. In analyzing the individual effects of gravity and

surface tension, it was determined that surface tension was most significant over the

top portion of the tube where dR/dx is largest and accounted for 10-15% of this

increase.

An elliptical tube with major axis aligned with the direction of gravity has a

larger effective gravity than a circular cylinder, as well as an increasing radius of

curvature over the top half of the tube. In addition, they are more practical from a

manufacturing standpoint than the non-circular tubes analyzed above. Vapor

boundary-layer separation should also occur at a point further downstream as compared

to a circular tube and thus the rapid thickening of the condensate film would be

delayed. Methods of manufacturing elliptical tubes, and associated problems will be

discussed in Chapters IV and VI.

4



Wallis [131 conducted flow visualizations (Figure l-2)of water around circular and

elliptical tube bundles. These photographs provide a qualitative feel for the flow

A

Figure 1-2. Flow Visualization, Water over Circular and Elliptical Tube Banks,
from Reference [131.

characteristics around each type of tube bundle. In examining the photographs, it can

be concluded that the separation point for the elliptical tube bank shifts downstream

compared to the circular tube bank and results in smaller wake regions behind

individual tubes. These effects should contribute to better heat transfer performance

for the elliptical tube bank. Experimental studies by Joyner and Palmer [14] show that

single phase flow resistance and pressure drop are significantly smaller for elliptical

tube bundles as compared to circular tube bundles. In power condensers, shell-side

(vapor) pressure drop has an effect on the overall efficiency of the power plant and on

the thermal driving force for condensation (Ts,-Twaii). Minimizing the vapor pressure

drop improves power plant efficiency and maintains a relatively constant Tsat (for a

5



large pressure drop, Tsat is reduced as vapor flows through the condenser resulting in

less thermal driving force).

Studies involving single-phase heat exchangers and condenser-evaporators indicate

that elliptical tube heat transfer performance is superior to a circular tube of

comparable surface area. Ota and Nishiyama [151 conducted an experimental investi-

gation of single phase forced convection heat transfer of air over an elliptical cylinder

of minor-to-major axis ratio of 1:3 at various angles of attack. They concluded that

elliptical cylinders gave improved heat transfer performance over circular cylinders at

all angles of attack (as a result of fluid turbulence) in the range of Reynolds numbers

studied (8000 - 79000). Moalem and Sideman [161 conducted a theoretical analysis of a

horizontal elliptical tube in a condenser-evaporator used in desalinization plants. Their

study showed a 10-20% enhancement for elliptical tubes as compared to circular tubes

with the maximum enhancement achieved at a minor-to-major axis ratio (aspect ratio)

of 1:4 where the major axis is aligned with the vertical. Huang and Mayinger [17]

conducted an experimental free convection heat transfer study around elliptical tubes

and found optimum improvement in heat exchanger performance for tubes with major

axis aligned vertically and with an aspect ratio of 1:2. Merker and Bfihr [181 used an

analogy between momentum and heat transport to derive a semi-empirical relation from

which to determine mass transfer rate from the fluid boundary-layer into the free

stream. The results of their study showed improved heat transfer performance for heat

exchangers in which the elliptical tubes were spaced wider in the longitudinal direction

and more compact in the transverse direction. In all these studies it appears that an

elliptical geometry improves the heat transfer performance of a heat exchanger.

6



B. SIGNIFICANT THEORETICAL STUDIES ON HORIZONTAL CIRCULAR

TUBES

The purpose of this survey is to provide a historical perspective to the

understanding of laminar film condensation on a horizontal circular cylinder. Only

those works which have made significant advances in this understanding are considered.

The methods of some of these analyses will later be applied to formulate and solve the

governing equations for the case of the horizontal elliptical cylinder. Figure 1-3

provides the geometrical layout and coordinate systems used in these analyses.

Figure [-3. Geometry for Film Condensation on a
Horizontal Circular Cylinder.

Nusselt [51 used a simple momentum and energy balance to determine the heat

transfer properties for condensation on flat plates and horizontal circular cylinders.

In simplifying these physical laws for solution, he made the following assumptions:

(1) The tube wall temperature is constant.
(2) The thermophysical properties of the fluid are constant.
(3) The temperature at the film/vapor interface is Tsat.
(4) The condensate film thickness is small compared to the radius of the tube.
(5) Heat transfer in the condensate film is one dimensional in the radial direction

which implies a linear temperature distribution when the film is very thin.
Convection in the condensate film is neglected.

(6) The only forces acting on the condensate element are due to viscosity and
gravity. Inertial forces are neglected.

7



(7) Flow in the condensate film is laminar.
(8) The vapor is quiescent with no interfacial shear.

The governing equations for this system become

d2u + g sin4O = 0

(1-2)

m hfg = -- (Tw - T•)

where m is the condensate mass flux rate across the interface. The mean heat transfer

is given by

=O0.943 f 4gZh,•p2siflTU ([-3a)
ti, L AT I

for a flat plate at angle 4P to the horizontal (not valid at (0 = 0) and
[4g3 2]1/4

Nsu =0.728 I D AT I(-3b)

for a horizontal circular cylinder.

Sparrow and Gregg [19,201 extended the Nusselt [5) analysis by applying boundary

layer theory to the condensate film. This study incorporated convection and inertia in

the energy and momentum balance while continuing to neglect interfacial shear. They

determined that for practical engineering fluids, inertia and convection had negligible

effect.

Shekriladze and Gomelauri [211 included interfacial shear by considering

momentum transfer across the interface due to the condensation process. They used an

asymptotic expression for the interfacial shear based on an infinite condensation rate

given by

= m(U, - U6) (I- •)

where U0 is the streamwise velocity of the vapor at the outer edge of the boundar;'-

layer. It was also assumed that U~mu6 such that the film velocity may be neglected and

8



that inertia and convection effects in the condensate film could also be neglected. As

noted by Rose 161, the validity of neglecting u6 requires that ).LAT/Illhfg be small (large

Prandtl number). For forced convection heat transfer on a horizontal circular tube,

Shekriladze and Gomelauri determined the following expression:

Nu = 0.9 - (1-5)

where

_PU.O (1-6)

Int

is the two-phase Reynolds number. When the effect of gravity cannot be neglected

(mixed convection) the mean heat-transfer coefficient is given by

Nu 0.64rVel1 +-/I + 1.69 F (I-7)

where

F- r Ih .gD (1-8)

and measures the relative effects of vapor velocity and gravity. It should be noted that

based on potential flow outside the vapor boundary layer, the interfacial shear will

always be positive and therefore this method does not predict vapor separation as would

occur in reality. Based on a minimum separation angle of 820 for single phase f!jw over

a circular cylinder without suction and no heat transfer after separation, Shekriladze

and Gomelauri conservatively estimated that the heat-transfer coefficient would be

reduced by about 35%. Actual separation occurs at a point further downstream and

results in a heat-transfer coefficient between the result for separation at 82' and no

separation. These expressions have been found to be reasonably accurate for cases of

high condensation rate and are useful for their simplicity.

Fujii et al. [221 conducted an analysis of mixed convection condensation on

horizontal cylinders using the two-phase boundary-layer equations. Their formulati )n

9



neglected inertia, convection and pressure gradient effects in the condensate film. The

governing equations for the model are given by

au av 0
ax ay

(1-9a)
U.=*--- +V-U"±U4 y2ý±

ax y x Pd

for the vapor boundary-layer and

au av
& + -

ax al

0= 1,±-• + p, g sinO (I-9b)

M P dy~ IIAT
m = P,;o =-

for the condensate film. The compatibility equations at the interface are given by

U6 = 0

TI (.Vy (L =y (I- 9c)

PI u-a- - v = -or.8

An approximate integral solution of the momentum equation for flow over a cylinder,

with suction by Truckenbrodt [231, was modified to more closely agree with the

numerical solutions of Terril 1241. This method enabled the determination of the

interfacial shear and subsequent solution of the governing equations for the condensate

film. This technique also predicted the point of vapor separation and subsequently, a

more accurate heat-transfer coefficient. For locations downstream of the vapor

boundary- layer separation point, the interfacial shear was assumed to be negligible and

simple Nusselt theory used to determine the heat transfer. Local and mean Nusselt

numbers were numerically determined for boundary conditions of uniform wall

temperature and uniform wall heat flux. Their results were in fair agreement with
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with experimental data. In addition to the dimensionless parameter, F, a new

dimensionless parameter, G, was defined as

G I 1 T p, Tl -10)G-

which is a measure of the condensation rate. As G--,, the results of Fujii et al. [221

agreed with the previous results of Shekriladze and Gomelauri [211. Lee and Rose [25]

noted an error in the formulation of Fujii et al. [221 in that the interfacial shear terms

in the condensate film momentum equation should have been divided by 2. They re-

analyzed the system of equations using both the modified and unmodified method of

Truckenbrodt [23] and found little difference whether one used the modified or

unmodified method of Truckenbrodt.

To date, Gaddis [26] has conducted the most comprehensive study of condensation

on horizontal circular tubes using the two-phase boundary-layer equations. His analysis

neglected surface tension in the momentum equation as well as viscous dissipation and

pressure in the energy equation of the condensate film. He determined that inertia

effects were negligible for most media (with the exception of liquid metals) and that

convection effects were somewhat significant for viscous liquids with Pr W 1, similar

to the conclusions of the simpler analyses of Sparrow and Gregg [19, 201. He identified

three regimes of behavior for flowing vapors. For low vapor Reynolds numbers, Re,,

gravity effects dominate the heat transfer and Nusselt's analysis adequately represents

the heat transfer behavior. For high Rev, condensation was shear controlled and the

Nusselt number is proportional to the square root of Re, as found by Shekriladze and

Gomelauri [21]. The intermediate region, in which gravity and vapor shear are both

significant, results in no simple relation. Gaddis also analyzed several cases of flow

separation (vapor boundary-layer and/or condensate film separation). For low Re, (
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102), vapor boundary-layer separation occlirred with no flow reversal in the liquid film.

This result is expected as the pressure gradient effect on the condensate film, which

tends to slow the condensate flow over the rear half of the tube, is a function of the

vapor potential velocity. At moderate Re, (= 103) vapor boundary-layer separation and

conder ,ate flow reversal near the interface occurred with a resulting decrease in the

mean fluid velocity and rapid thickening of the condensate film. At high Rev (Z 105),

no vapor boundary-layer separation occurred but the condensate f!Im separated at the

wall causing a sharp reduction in mean condensate velocity with a rapid thickening of

the film as a result of a significant, adverse pressure gradient. Fluid separation at their

respective boundaries is defined as the condition at which the shear is less than or equal

to zero.

diMarzo and Casarella r771 conducted a similar analysis using a more general

solution technique and arrived at the same results as Gaddis [26]. In their analysis of

the flow separation phenomenon, they provided guidance on determining heat transfer

performance once separation had occurred, At low Rev, gravity effects dominate and

no flow reversals or thickening of the condensate film occurred. The use of a Nusselt

type analysis with no interfacial shear would seem prudent in the region beyond vapor

separation. At moderate to large Rev, pressure gradient effects dominate. The adverse

pressure gradient over the back half of the tube causes flow reversal and a rapid

thickening of the condensate film. In this case, it would be prudent to neglect heat

transfer completely beyond the separation point of the vapor-boundary layer or

condensate film.

Rose [281 studied the effects of pressure gradient in the condensate film. In this

case, the pressure gradient on the condensate film is due to the pressure gradient of the

vapor, as determined by potential theory, which is impressed on the condensate film.

12



He simplified the analysis by using the Shekriladze-Gomelauri model [21] which ignores

inertia and convection in the condensate film and uses the asymptotic expression for

the interfacial shear. As a result of this analysis, a dimensionless parameter, P, was

defined by

P~ hfg~P = p•h l._.._t(1-11)

1, 1 AT

which represents the pressure gradient effect (Gaddis (261 had a similar combination

of dimensionless parameters which were equivalent to P). When P = 0, the governing

equations reduce to those of Shekriladze and Gomelauri [21]. He concluded that the

effect of including pressure gradient was to improve heat transfer over the forward

half of the tube since the pressure gradient over this region is favorable (tends to

increase the mean film velocity which reduces the condensate film thickness). As a

result of the formulation, he found that for cases where P > Ff8, a critical angle at

some point on the rear of the tube was reached where d5 /di -. -. In this case, it was

not possible to obtain a solution over the entire tube. It was postulated that this critical

angle might indicate some instability followed by some degree of waviness or

turbulence. It was noted that this critical point was reached prior to the point at which

the condensate film separated. For conditions which permitted solution over the entire

tube (i.e. P < F/8), any increase in heat transfer achieved over the forward part of the

tube was balanced by a decrease in heat transfer as a result of the adverse pressure

gradient over the back half of the tube such that there was little change in the mean

heat- transfer coefficient. Since the pressure gradient due to potential flow of vapor

just outside the vapor boundary-layer is given by

dip _ dU, (1-12)
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which is symmetric around the surface of the tube from front to back, the favorable

effect over the front half of the tube is exactly offset by the adverse effect over the

back half of the tube. Referring to the studies conducted by Gaddis (261 and diMarzo-

Casarella [27], in the region of moderate Rev, condensate film separation from the tube

wall does not occur but the pressure gradient sufficiently retards the film such that

flow reversals occur and the film still rapidly thickens. In the present study, the effects

of pressure gradient using the analysis of Rose [28] resulted in a condensate velocity

distribution which approached zero as the critical angle was reached. This phenomenon

may be a result of the model used in formulating the problem. Since Shekriladze and

Gomelauri [211 used an asymptotic expression for the interfacial shear, negative

velocities cannot exist in the velocity profile. The positive velocity distribution is

retarded by the adverse pressure gradient. In the case of P > F/8, the pressure gradient

is large enough to cause complete stoppage of film flow at *c and the film thickness

increases rapidly.

Krupiczka [291 examined the effects of surface tension due to film curvature on

condensation on circular cylinders. He used a simple Nusselt type model but included

surface tension in the momentum equation. In his development he did not assume the

film thickness was much less than the radius of the cylinder until after the inclusion

of the surface tension term to account for the curvature of the film. The resulting

equation was a second order ordinary differential equation which required two initial

conditions. The first condition was given by the symmetry of the problem. However,

the initial thickness was not obvious and was arbitraril", chosen to be that obtained

from the Nusselt model. He concluded that the effect of surface ýcn•ion was small on

the forward part of the tube and increases in significance over the , k part of the tube

due to the rapidly changing film thickness. This significance was dcpendent on the
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magnitude of dimensionless parameter, A, given by

A = -We , (1-13)4 p 2 g r Pr]

which is dependent on the surface tension of the fluid through a "modified" Weber

number (We = a/(pgr2 )) and the radius of the cylinder, r. The conclusion was that

surface tension can be significant for small diameter tubes and wires where, as r

becomes smaller, the film thickness becomes relatively significant and hence the film

curvature cannot be neglected. For most practical cases, r:J• and therefore the surface

tension effect due to film curvature can be neglected. The effect of assuming the

initial film thickness to be that given by Nusselt [5] was checked and verified to have

minimal effect on the mean heat-transfer coefficient.

C. SIGNIFICANT THEORETICAL STUDIES ON HORIZONTAL ELLIPTICAL

TUBES

Some theoretical work has been done on horizontal elliptical cylinders in a

quiescent pure vapor using a Nusselt type model. The physical orientation and

coordinate system is shown in Figure 1-4.

Cheng and Tao [301 approximated the surface of an ellipse by several circular arcs.

They analyzed condensation on these arcs using the same assumptions as Nusselt. The

ellipse was aligned such that the major axis, a, was aligned with the direction of

gravity. From their numerical results they determined that the heat-transfer

coefficient decreased with increasing eccentricity, k (defined as the ratio of the minor

to major axis). Values of k were varied from that of a vertical flat plate (k = 0) to that

for a horizontal circular cylinder (k = 1). The mean Nusselt number was determined by

a surface area weighted average of the mean Nusselt number for each circular arc and
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Figure 1-4. Geometry for Film Condenisation on a Horizontal Elliptical Cylinder.

is given by

94= 0.2876 fr.-" 14F, P2 di, g 0 a~),4A (1-14)

ýJa] i f ! u

where

Zi*)= (sino)-4, @(sine)"de +C1  1-5

C. is an integral constant which links each arc and i is the number of arcs used in the

approximation. In the practical range of eccentricity (0.3 - 0.6), the mean heat transfer

coefficient was increased by 10 to 18% over that of a circular tube with the same

surface area. Ali and McDonald [311 conducted a similar type analysis as Cheng and

Tao without the circular arc approximation as a first estimate for condensation on

inclined circular tubes.

Wang et al. [321 used the Nusselt assumptions to analyze condensation on

horizontal elliptical tube for which the major axis is oriented at an angle. a, with

respect to the vertical axis. They obtained an expression for the mean heat-transfer
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coefficient given by [¼4
=[htP: 2 ':b 2(fU'Z~ p +f-(()-/4P (1-16)

where

Z(P) = sin- f0tI (ab ( sin'k3 P do (1-17)

The results of this study showed that the maximum mean heat-transfer coefficient is

obtained when the major axis is aligned with the vertical (a = 0' ). These theoretical

results were validated with experimental data for an elliptical tube with semi-minor

axis of 8 mm and semi-major axis of 22 mm. Sheng and Cha'o [33] noted that the mean

heat-transfer coefficient was incorrectly determined since the heat-transfer coefficient

is averaged over the surface area and the radial distance, r, is not constant for an

ellipse. In the course of this current study, the problem formulation of Wang et al. [321

was rerun with the correct expression for the mean heat-transfer coefficient (as later

derived in Chapter II). The corrected mean heat-transfer coefficient of the elliptical

tube analyzed by Wang et al. is 11.3% larger then a circular tube with the same surface

area. Additionally, it should be noted that the heat transfer performance of this

elliptical cylinder was better than the circular cylinder for angular orientations up to

a = 500. The corrected theoretical results are approximately 5% lower than those

determined by Wang et al. and more closely agree with their experimental data. Figure

(1-5) shows the heat transfer enhancement for elliptical tubes of varying eccentricity

and orientation angle.

Sheng and Cha'o 1331 studied the effects of surface tension and variable wall

temperature on condensation on a horizontal elliptical tube. The remaining assumptions

of the analysis were the same as those above. For the wall temperature, a cosine
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Figure (1-3). Elliptical Tube Mean Nu Compared to Circular Tube Mean Nu for
varying Eccentricity and Orientation Angle.

distribution of the form

AT = (T.,-T.)(1 - A cosO) (1-18)

was used (which has been shown (Memory and Rose [34]) to be in good agreement with

experimental data) where the value of A4 depends on the ratio of the outside to inside

heat-transfer coefficient. They determined that variable wall temperature affected

local values but not the mean values of the heat-transfer coefficient. For the surface

tension effect, it was assumed that the film thickness was much smaller than the radius

of curvature of the elliptical surface and thus the surface tension effect was due solely

to the curvature of the tube wall. This is in contrast to the study of Krupiczka [291 for

a circular tube where the surface tension was due to the curvature of the condensate

film. Over the back half of the tube the radius of curvature decreases with streamwise

18



distance resulting in a retarding effect on film flow. As the flow is slowed, the film

thickness increases rapidly and at some critical angle becomes infinite in magnitude.

This phenomenon is similar to that described by Rose [281 for the pressure gradient

effect. The surface tension effect was determined to be significant for k < 0.6 . In

comparison to a circular tube, surface tension causes a favorable pressure gradient over

the front half of the tube resulting in a greater film velocity, thinner film thickness and

improved heat transfer. It has an opposite effect on the back half of the tube which

tends to negates this improvement. The gravity component of the momentum balance

is the driving force behind the enhancement in elliptical tubes. Consideration of

surface tension results in a slight decrease in the mean Nusselt number as compared to

the situation in which the surface tension is neglected.

A potential advantage of an elliptical tube compared to a circular tube is the

difference in vapor flow characteristics as a result of a better streamlined shape.

Panday [351 developed an explicit numerical method for two dimensional film

condensation and applied it to the case of downward flowing vapor over elliptical

cylinders. Convection and inertia were included in the condensate film as well as

surface tension and pressure gradient (as a result of potential flow of vapor outside the

vapor boundary-layer). The interfacial shear was approximated using the asymptotic

expression for infinite condensation rate. Several errors were found in the expressions

for surface tension and pressure gradient as a result of an incorrect analysis of the

differential streamwise length, dx. The first error is the result of assuming that dx =

rd4. This relationship assumes that the radial distance from the centroid of the ellipse

is constant over the interval of the parametric angle. This fact is not true (as will be

shown in Chapter II) and results in an error whose magnitude is dependent on the step

size used in the numerical procedure. The second error involves the expression for r.
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If the parametric angle is measured from the vertical axis of the ellipse (as appears to

be the case in Panday's expression for vapor velocity potential), then r should be given

by

x = b sin45

y = a coso (1-18)

r = x+ y2 = a +coi k2 sin2,,

Panday used an expression for radial distance given by

r = a/si2  ÷ k2 cos2  (1-19)

The magnitude of the resulting error is dependent on the eccentricity of the ellipse.

Additionally, there appears to be an error in the gravity component of the momentum

equation. Panday uses a body force given by pgsinO, which is true only for circular

geometries but is untrue for elliptical geometries. His results will therefore not account

for the improved performance which are obtained by placing more of the surface in

line with the direction of gravity. Panday's conclusions were that the overall heat

transfer was reduced for elliptical tubes at low velocities (as compared to a similar

circular tube) due to a rapid thickening of the film at the stagnation point and the

overall heat transfer is increased for high velocities due to increased interfacial shear.

These conclusions are opposite to what one may expect. At low velocities, the film

thickness near the stagnation point for elliptical cylinders is thinner than the equivalent

circular tube as a result of increased effective gravity. This effect results in improved

heat transfer. Pressure gradient effects due to potential flow and interfacial shear

should be negligible since the velocity is small. At high velocities, the streamlined

geometry of elliptical cylinders results in lower interfacial shear and pressure gradient

effects as compared to circular cylinders. These effects should result in a thickening
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of the condensate film as compared to circular cylinders and hence reduced heat

transfer for the same effective diameter and free stream vapor velocity.

D. OBJECTIVES OF THIS THEORETICAL STUDY

The results of previous studies indicate that elliptical tubes can be used to

increase condensation heat transfer in low vapor velocity condensers as compared to

circular tubes with the same surface area. The present investigation examines the

effects of vapor shear, pressure gradient and surface tension in laminar film

condensation on a single horizontal elliptical tube with its major axis aligned with

gravity and the free stream velocity. Interfacial shear is estimated using both the

simple assumptions of Shekriladze and Gomelauri (211 and the more complex technique

of Fujii et al. [221. The latter case calculates the angle at which the vapor boundary-

layer separates such that the effect of reduced drag on the mean heat-transfer

coefficient can be evaluated.
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1i. THEORETICAL DEVELOPMENT

Following the theoretical developments used for the case of laminar film

condensation on a horizontal circular tube, theoretical models are developed for laminar

film condensation on a horizontal elliptical tube of eccentricity, k. This development

starts with a Nusselt [5) type model in a quiescent vapor, and then adds forced and

mixed convection as in the models of Shedkriladze and Gomelauri [211 and pressure

gradient as considered by Rose [281. The pre°•t,'re gradient takes into account the

effects of potential flow outside the yap, •oundary-layer as well as surface tension.

Finally, a model is developed which analyzes the vapor boundary-layer and boundary-

layer separation following Fujii et al. [22]. Pressure gradient and surface tension are

not considered in this model due to the complexities introduced by the use of the two-

phase boundary-layer equation. Where possible these elliptical models are checked

against existing theories for the "limiting" eccentricities of a circular cylinder (k=O),

vertical flat plate (k=l) and horizontal flat plate (k--o).

A. FACTORS RELATED TO ELLIPSE GEOMETRY

Consider an elliptical cylinder whose cross-section is oriented such that the major-

axis is aligned with the vertical as shown in Figure II-1. The eccentricity, k, of the

ellipse is defined by

k h (II-1)
a

where a and b are the semi-major and semi-minor lengths, respectively. Functions

related to the geometry of the ellipse are initially developed in a cartesian coordinate

system (xl,yl) whose origin coincides with the centroid of the ellipse. This is then

transformed into a cylindrical coordinate system (r,0) where r is the radial distance
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from the ellipse centroid to a point on the ellipse surface and 0 is the angle measured

from the vertical. The transformation equations are

x r = r sinO

Y, = r cose

The elliptical surface can also be defined by a parametric angle, (0, measured from

the upper semi-major axis, such that the Yi coordinate on a circle of radius a translates

Figure 11-1. Geometry for Film Condensation on a Horizontal Elliptical

Cylinder with Major Axis Parallel to Gravity.

to the y, coordinate on the ellipse and the K, coordinate on a circle of radius b translates

to the xi coordinate on the ellipse. The transformation equations are given by

x, = b sin* II3

y, = a coso

Combining Equations (1-2) and (1-3) results in a relationship between r,0 and 4p:

23

i i i i i/



sin4, = r sine (a)b

CAX* = r cosO (b) (114)
a

tano - (C).
k

It is assumed that the condensate thickness, 6, is much smaller than the radius of

the elliptical surface. Therefore, the equations for the condensate film and vapor

boundary-layer are developed using an orthogonal, curvilinear coordinate system, (x,y),

where x is the streamwise distance along the elliptical surface and y is the distance

normal to the surface.

1. Radial Distance, r

In cartesian coordinates, the surface of an ellipse is given by

2 2

bz a2

The radial distance, r, can be determined by

2 2r(x1,y1) = + Y(1I6)

Using the P-rametric transformation equations (Equation (11-3)), an equivalent

expression for the radial distance is given in terms of 4)by:

r() = a cos 2•4 + k 2 sin2 , (II-7)
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2. Radius of Curvature of an Ellipse, R

The curvature, ic(x,), and the radius of curvature, R(x 1 ), of a function, f(x1 ),

is given by

S / f"(x 1) I
[1 + (f'(x1 ))2]3r2 (11-8)

R(x,) = l/K(xl)

where the prime denotes differentiation with respect to xj. Solving for y1 as a function

oi x, using Equation (11-5), determining the radius of curvature using Equation (11-8)

and transforming the results to parametric coordinates gives the radius of curvature as

a function of 40:

R(o) a sin + k2cos2O3t (II-9)

3. Streamwise Length, x

Since the radial distance to a point on the elliptical surface is not constant,

the streamwise length is not proportional to 6 as it would be for a circle. Additionally,

as eccentricity varies, the streamwise length for a given 0 is not the same. To obtain an

expression for x in terms of parametric angle +, consider first a point on the ellipse

surface as shown in Figure 11-2. Moving a small distance, dx, results in incremental

changes, dO and dr. The resulting relationship between x,r and 0 is given by.

(dx) = (dr)2 - (r dO)2  (II-10)

Expressions are now needed for dr and dO in terms of do. For dr, this is simply

achieved by differentiating Equation (11-7):

dr - I a (k:2_1) sin24 a0(I-)
2 4W. , k2sin:2,0
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Figure 11-2. Enlarged View of Point on
Ellipse.

For dO, taking Equation (I1-4a), substituting Equation (11-7) for r and differentiating

the resultant expression results in:

Cosa AO = k co(4-[ccs 2$ ÷ kzsiZO(-

Combining Equations (HI-4b) and (11-7), and substituting for cosO in Equation (II-12)

results in an expression for dO in terms of d$:

A = k d7 (II- 13)
cos2(o + k2sii20

Substituting Equations (II-11) and (11-13) into Equation (11-10) gives an expression for

dx as a function of d$:

k2 Il(k2-1)2sinz2O (I-14)
dx =a d)

cos2, 4 k sin2 0

This may be integrated to obtain the streamwise length. For compactnes., a function

X(io) is defined by

k2 + j(k±"l)2sinZ2( (II-15)
x(0) = a 4

co624b k2sisiO
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In later developments, a characteristic length is used to non-dimensionalize

the heat transfer parameters in the model. An effective diameter, De, is defined as the

diameter of a circular cylinder having the same surface area as an elliptical cylinder

and will be used as a characteristic length. The effective diameter is given by

nD = 2fox(,)d+ (1-16)

Streamwise length is non-dimensionalized by:

x 2x (I-17)
"ltDe

This enables direct comparison between elliptical and circular cylinders since it

represents an equivalent surface area.

4. Streamwise Gravity Component, g.

The component of gravity in the streamwise direction is tangent to the

elliptical surface and is a function of streamwise location. A line tangent to the

surface, defined by the slope of the surface, is obtained from Equation (11-5),

dyl a Xi
___- (11- 18)

dx1  b ýb2 -4x

A unit vector in the streamwise direction is then given by

b= fT2- a 2 a_ X

b- b

The streamwise gravity component is given by the dot product of the gravity vector and

the tangent vector,

9x =9 -= a xi

b 2 (11-20)
(b2 _ Xj) + aLx2

b2
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Transforming Equation (11-20) into parametric coordinates results in the expression:

g' = gf f(4)

where f(n) 2sin 2 (I -21)
Vsifl + k2cos24

5. Potential Flow at Ellipse Surface, U#

When considering forced convection due to the flow of vapor over the

condensate film, the velocity of the vapor influences the condensate film thickness

through the vapor shear at the film/vapor interface. The vapor velocity at the interface

will be dependent on the vapor velocity outside the vapor boundary-layer. This velocity

is determined from potential flow theory. Assuming that the film thickness, 6, and the

vapor boundary-layer thickness, A, are much smaller than the radial distance, r, of the

elliptical surface (and therefore may be neglected), the potential flow, U#, about an

elliptical surface with major axis aligned with the vapor free stream velocity, U., is

given by

U4 = U. (I +k) (11-22)

Details of the derivation of this expression are provided in Appendix (A).

6. Ellipse with Major Axis Perpendicular to Gravity

For the case where the ellipse major axis is perpendicular to the vertical as

shown in Figure 11-3, the previously determined equation for streamwise component of

gravity remains the same. For 0 < k < 1, the major axis is aligned with gravity. For 1

< k < -, the major axis is perpendicular to gravity.
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Figure 11-3. Geometry for Condensation on Horizontal Elliptical
Cylinder with Major Axis Perpendicular to Gravity.

B. FREE CONVECTION CONDENSATION ON AN ELLIPTICAL CYLINDER

(NUSSELT [5] TYPE ANALYSIS)

Consider a quiescent, saturated vapor at a temperature Tsat, condensing on a

horizontal elliptical cylinder of eccentricity, k, and semi-major axis, a, aligned with the

direction of gravity as in Figure 1I-1. The same simplifying assumptions are made as

proposed by Nusselt in his analysis of condensation on a horizontal circular cylinder.

These assumptions are:

(1) The vapor is pure and quiescent.
(2) The tube wall temperature is uniform and constant.
(3) The thermophysical properties of the fluid are constant and evaluated at some

given rcference temperature.
(4) The temperature at the film/vdpor interface is Tsat.
(5) The condensate film thickness is small compared to the radius of the ellipse.
(6) Heat transfer in the condensate film is one lIimensional in the radial direction

providing a linear temperature distribution across the film (based on 8oR).
(7) The only forces acting on the condensate film are viscous and gravity forces.
(8) Flow in the liquid film is laminar with no waviness and no vapor boundary

layer separation.
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A fluid element of unit width is analyzed in detail and shown in Figure 11-4.

Figure 11-4. Condensate Film Element for Free
Convection.

Conservation of mass for the fluid element requires that,

p[f0 u db'y dx - [p u dy + ' p{f %uY}] dx +mdx=O (11-23)

where m is the local condensation mass flux rate.

Defining the mean film velocity as

uM r u dy , (11-24)

Equation (11-23) simplifies to

m d (p".8)} (-25)

Conservation of momentum for the film element is a balance of viscous and body

forces which reduces to

d-u g O ) = 0 (11-26)
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Here, an assumption is made that the fluid is Newtonian, i.e.,

du (11-27)
dy

Conservation of energy is a balance of latent heat from condensation and heat

conduction through the condensate film which reduces to

he, dx = (~T,)dx
(11-28)

The boundary conditions for the momentum equation are

UY.o = 0

cdi' 0 (11--29)
"€8= •11i~ = 0

-y

Integrating the momentum equation subject to the boundary conditions results in

a local film velocity of

u(y) = •1 fl(4) 8y- Iy2) (11-30)

and a mean film velocity of

u - i 1(*) (11-(1 )

Tit 3

Combining the continuity equation, energy equation and expression for film mean

velocity (Equations (11-25),(11-28) and (11-31)), results in

-' =T _ - ._._i 9 (4 f 3 (11-32)
hf ~~~ 2Tt1* 3

,r 8 dx[3•

Using the relationship between dx and do from Equations (II-14) and (11-15) and
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carrying out the differentiation results in
2

it AT 1 _ pig 1 (853ý(4) + 3 f 5(t) 2 dA) (11-33)

hA 8 In, X(4) d-)

A dimensionless parameter, Z1 , is defined by

Z (11-34)
B1

where B1 is given by

B ) - T11 ATD, (11-35)

Note that the equivalent parameter used by Nusselt [31 multiplies Equation (11-35) by

a factor of three and uses radius in place of effective diameter. Substituting Equations

(11-34) and (11-35) into (11-33) results in a first order ordinary differential equation for

ZI:

4 _ 4Ai($) = 4 X(4) (11-36)

This equation can be solved exactly by using an integrating factor which would

require numerical integration or can be solved numerically using a forward stepping or

propagation technique. The initial condition is determined based on the symmetry of

the problem which requires that (dZ,/d$•)_ 0  0. Solving Equation (11-36) at 40 = 0

results in the initial condition

_ 3 V(O) _ 3ak 2  (11-37)

32D, f(0) De
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The non-dimensional film thickness, 8', and film thickness, 8, are determined

respectively by

8 ( t) an (11-38)

8(40) = ( Z1(4) B1 }14

The local heat-transfer coefficient, a, and mean heat-transfer coefficient are given

respectively by
A1a() 1- and8(t')

f 2( (11-39)
- a( o)fiA, - •2 ftc(*) x(4') d2

and the local Nusselt number and mean Nusselt number by

N = (4)D, D D
X1  6(40) (11-40)

,u = ýD--z =f-- X(O') d*
At i~o 8(4,)

For the case where k = 1 (circular tube); f 1(4,)=sinO, f1 '(+)=cos4O, X(40)=a and D,

2a and Equation (11-36) reduces to

dZi - 2 (4I-41)
d4 3 sin+ sin4"

which is the same as that found by Nusselt [51 except for a difference in the definition

of B1 .

The above development can also be applied to a horizontal elliptical tube whose

major axis is perpendicular to the direction of gravity as shown in Figure 11-3. In this

case, b is greater than a, i.e. k > 1.
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C. FORCED CONVECTION CONDENSATION ON AN ELLIPTICAL CYLINDER

(SHEKRILADZE-GOMELAURI [211 TYPE ANALYSIS)

Consider a saturated vapor at temperature Tsat, flowing downward over a

horizontal elliptical cylinder with free stream vapor velocity, U.. The elliptical

cylinder has eccentricity, k, and semi-major axis, a, parallel with the direction of

gravity and vapor flow. The same assumptions as for the case of free convection are

used here with the exceptions:

(1) The force of gravity is neglected.
(3) U0 W uy_ 6.
(4) The interfacial shear stress is approximated by an asymptotic expression

assuming an infinite condensation rate,

• = m(U,-u 8 ) = mU, (11-42)

Conservation of mass and energy are the same as previously derived (Equations

(11-25) and (11-28)). The only forces acting on the fluid element are viscous forces.

Thus, conservation of momentum reduces to

d =u (11-43)

with the boundary conditions,

U.o = 0

(11-44)

1'11 =Y a = m U,

Integrating the momentum equation subject to the boundary conditions results in a

local velocity of

uy - y (11
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and a mean film velocity

U m .* (11-46)

Tit2

Using the expression for potential flow over an elliptical cylinder (Equation (1I-22))and

defining a velocity function, f 2(4), such that

f2()) - I , (11-47)
V1 + 2coi4

the mean film velocity can be expressed as

U. MO a (11-48)
T11 2

Combining the continuity equation, energy equation and expression for mean film

velocity (Equations (I1-25),(I1-28) and (11-48)) results in

IxtAT I = d fPt A• AT U () MO (11-49)

hf, 6id4 i ¶hf, J2 Y1

Using the relationship between dx and do from Equations (11-14) and (II-15), and

carrying out the differentiation results in

11AT 1I p, A,ATU_ 1 (fd8) (11-50)S,0)0 .,%. 0t
hfS 8 2,1h d

Defining a dimensionless parameter, Z 2, as

Z2 (11-51)

where

B2  D. (11-52)
p, U.

35



Equation (11-50) becomes

S , ÷2•(-*) Z-2 = 4 x(() (11-53)
dO A200) D, A2 4)

This problem is a first order ordinary differential equation which can be solved using

a forward stepping numerical integration technique. The initial condition for the

problem is based on symmetry which requires that (dZ2/dO)0= 0 = 0. Solving Equation

(11-53) at P = 0 results in the initial condition

2 X(O) _ 2ak2 (11-54)
D -- (O) D,(1 +k)

The non-dimensional film thickness, 8, and film thickness, 8, are determined

respectively by

" ) (11-55)

8~ V 244)B 2

The heat-transfer coefficient for forced convection condensation can be considered in

a different form. Combining Equations (II-40),(Il-51), (II-52) and (II-55) results in

NuRMk-1 = I , and
6"(,) (11-56)

Flu k -, f-- x(t) =

For the case where k = 1 (circular tube), f 2(1) = 2sin4o, dx = ad$ and Equation (II-

49) reduces to

I = d jPt U. } (II-57)
-6 -ad ýi , 'Ji , (1

which is the same as the Shekriladze-Gomelauri [21] governing equation for a circular

cylinder with no body forces.
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D. MIXED CONVECTION CONDENSATION ON AN ELLIPTICAL CYLINDER

(SHEKRILADZE- GOMELAURI [21] TYPE ANALYSIS)

Consider a saturated vapor at temperature Tsat, flowing downward over a

horizontal elliptical cylinder with free stream vapor velocity, U.. The elliptical

cylinder has eccentricity, k, and semi-major axis. a. which is parallel with the direction

of gravity and vapor flow. The forces acting on a film einment are viscous and body

forces. The interfacial shear is given by the Shekriladze-Gomelauri [211 model for

infinite condensation rate as in the case of the forced convection model (Equation (II-

42)).

Conservation of mass and energy are as previously derived. Conservation of

momentum for the condensate film reduces to

d2u - P, g ) =- 0 (11-58)

with boundary conditions,

UY.0 = 0

(du). = m!U# (11 59)

Integrating the momentum equation, subject to the boundary conditions, results

in the local film velocity

u(y) = fg ) aY- Z + mU (11-60)

and mean film velocity

U I = 2 + U 8 (11-61)
U. 4% -• + -t¢ A2% ,- '.•

Tit 3 ill

where the expression for potential flow over an ellipse and its associated velocity

function (Equations (11-22) and (11-47)) have been used.
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Combining the continuity equation, energy equation and expression for mean film

velocity (Equations (11-25), (11-28) and (11-61)) results in

..1 AT 1 = d 1P2g -3 , p, 11 AT U (11-62)

h- 6 x - 3) (11-6)2

Using the relationship between dx and do, and algebraically manipulating Equation (II-

62) results in

1 x() _* d8" 2 x(*) d + , (O) 8" (11-63)

where F is a dimensionless parameter relating free and forced convection and 8' is a

dimensionless film thickness given respectively by

F i In D, hfg
U).,t AT

(11-64)

8.__ 8I, =. _D1.
v11De D6

Differentiating Equation (11-63) results in

S D. {2Ff(%) 6.a d:. +2F f +) ("(*) (11-65)6. 2;, -M- d- 3 d*,)•

Regrouping the terms shows that the equation is a first order ordinary differential

equation:

{ ))8*.d + { 2Ff(.) +" } 2X(.) (11-66)2{ 2ry,t) 8, + MO* , 2F / -% - 424() -

The initial condition for this problem is again based on symmetry, which requires that

dS"/d4,=O at 44o=O. Inserting this condition into Equation (11-66) results in a fourth oru r

expression for 8*

2 F f(O) 6a' f,(O) 8u1 -2 X(O) = 0 , (11-67)
3 D.
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whose root of interest is given by

-in

af(0 + ((0) 2 )~ + 4 (M/ F f Ol, D,

2 {2/3 F /1(0)} (11-68)

13klIFa 1+k((II68

[41 ~k) 3 D, k

cquation (11-66) can be solved numerically to obtain the film thickness. The other heat

transfer parameters are determined as before (Equations (11-39) and (11-56)).

For the case where F=O and k=1 (forced convection over a circular tube), Equation

(II-63) reduces to Equation (11-57) as expected. For the case where F - -oand k =1 (free

convection over a circular tube), Equation (11-63) becomes

I D,L d2 Ffl(*) 8. (11-69)" 2x(_ ) d* 3

Upon substitution for the parameters F and 8" (Equation (11-64)), Equation (11-69)

becomes

11P~~sdj.!3 (-70)
6 a 1, AT q, 60 3

which is the same as Nusselt's governing equation [51 for laminar film condensation on

a horizontal circular cylinder.

E. MIXED CONVECTION CONDENSATION ON AN ELLIPTICAL CYLINDER

WITH SURFACE TENSION AND PRESSURE GRADIENT EFFECTS

Consider a pure saturated vapor at temperature Tsar, flowing downward over a

horizontal elliptical cylinder with free stream vapor velocity, U... The elliptical

cylinder has eccentricity, k, and semi-major axis, a, parallel with the direction of

gravity and vapor flow. In addition to the assumptions used for mixed convection in
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the last section, pressure effects in the condensate film are considered in the

development of the governing equations. The pressure on a condensate film element

will be a combination of that impressed upon the element by the potential flow of the

vapor as well as that due to surface tension. A fluid element is shown in detail in

Figure 11-5.

4dp)4 y

Y'

Figure 11-5. Condensate Film Element for Mixed
Convection with Pressure Gradient.

Conservation of mass and energy are as previously described. Conservation of

momentum for the film element is a balance of viscous, pressure and body forces which

reduces to

dT u I -2 0 (II-71)

~'dy 2

with boundary conditions

UY.0 = 0

(u), U (II- 72
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As previously stated, the film pressure is a combination of the pressure due to

potential flow, po, and the pressure due to surface tension, p.. Thus the total pressure

gradient is given by

dp dp. dp +..._ . (11-73)
dx dx dx

The pressure gradient due to potential flow is given by

dp* - U dU, _ -p,,U, dU., (1I-74)

dxdx X(,O) di1174

Substituting the expressions for potential flow and X(o) (Equation (11-22) and (11-15)),

into Equation (11-74) results in

dp* = -& U- (fI-75)
dx 2a 3(4)

where

A (1+k) 2 k2 sin2O 2 coAO + k2sinAO (11-76)

) sin2O + k2cos2 ]2  k2 + !(k_1)2 sin224i
4

The pressure due to surface tension is given by

p" = 0 (11-77)

R(*

It is assumed that 64tR. Thus, the pressure gradient is given by

dp_ _o dR _ a dR (11-78)
dx R2 dx Z2 X(O) d,

Substituting Equations (11-9) and (11-15) into Equation (11-78) results in

dp _ 3 a 44 (11-79)
dx 2 a2
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where

k (1-k 2) sin24 cos2.0 ÷ k2sin2O (11-80)
[sin24 + k 2cos24] 5/2 k 2 

+ 1 (k2W-) 2 sin322

4

Integrating the momentum equation, subject to the boundary conditions results in

a local film velocity of

u~y) = -f 1(O) +•p" U! 43 0() ÷ _ -°--f 4(0) 6y - 2 (0 , )(1) 8
i2a 1 2 1 1a

2  2) Tit

and a mean film velocity,

F pg P 3082 mU.
-pU2 3A ]4 2 - + (11-82)u. p___88A(,)+ -ý f34') + /,4) + 1'

Tit 2a ill 2 T1, a2 3 2

Combining the continuity equation, energy equation and expression for mean film

velocity (Equations (11-25), (11-28) and (II-82)), results in

)LIAT AT d pg p_•.u 3 P, 10
h,, 8 dx [ t 2a Ti, 2 T (11-83)

+ Pt 1, AT U. A24) a
2 hfg n,

Using the relationship between dx and do, and algebraically manipulating Equation (II-

83) gives

- - -Ff,(*) + -i'Pf3 (*) + f4(MO
" x(%) ii 2a 2( -B (11-84)

2

where F and 8" are as previously defined in Equation (11-64). P and Bo are
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dimensionless parameters defined by:

P p, hfg viI

pg

a

P is related to the pressure gradient and Bo, the Bond number, relates the inertia effects

to surface tension effects. Differentiating Equation (11-84) results in the following first

order ordinary differential equation:

2 X(4O) _ 2 F f1 ($) + -I P f 3(+) + 3 fD 4%)l
D, a Ta) BO

+f200) " {[2 FX(4o) + L. P/(40) (11-86)
+ a() ) - :b- + ] - -

a B o £()-1 3

In the previous development, film separation and instability were not applicable

since no effects were considered which could retard the film flow and (d8'/d4)-.-only

at 4),=%. However, in the present analysis, the decreasing potential flow and increasing

radius of curvaturp of the elliptical cylinder causes the pressure gradient to have a

retarding effect on the condensate film over the back half of the tube. At the point of

condensate film separation from the tube wall, the film shear stress at the wall is

negative which implies flow reversal (du/dy • 0 at y = 0). Differentiating Equation (II-

81) and solving for the film separation criteria (du/dy = 0 at y = 0) results in the

following condition for separation to occur:

f( ,(0) + 2 Pf 3() + 3 '(,0) a. + 2 2(40) 8 .0
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Condensate film instability occurs when the rate of change of film thickness is infinite.

From Equation (11-86), this condition occurs when

Dl40 P"~ f3oO + !,0E (11-88)
a (a)Bo f(')- V A) (")o

From a comparison of Equations (11-87) and (11-88), it is evident that the condition of

film instability will occur first (has a smaller magnitude than the film separation

criteria for all conditions) and is therefore the limiting condition. Rose [281 suggests

that this instability may manifest itself in wavy or turbulent flow, or may signify the

detachment of the liquid film from the tube surface. For the case where 1/Bo = 0

(surface tension neglected), and using Equations (lI-21),(ll-47)and (11-76) for fl(O),f2(O)

and f3(N) in Equation (11-88), it can be seen that the condition for which solutions can

be determined over the entire tube surface occurs when

P < "!L _L+2 F (11-89)

For a circular tube (k=l), Equation (11-89) reduces to P < F/8, which was that found by

Rose 1281. If the opposite of Equation (11-89) is true, then the pressure gradient effect

is dominant enough to significantly retard the flow over the back half of the tube and

result in a rapid thickening of the condensate film. Note that the condition for

condensate film instability is a function of vapor velocity (F) since the pressure

gradient due to potential flow is velocity dependent.

For the case where P = 0, and using Equation (11-88), the condition which allows

solution of the momentum equation over the entire tube is now given by

(Bo 3 ()ke) (ll-9k
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Note here that the condition for film instability is only a function of geometry.

Therefore, for small values of eccentricity (approaching a vertical flat plate), the

retarding effect of surface tension on the condensate film over the back half of the

tube is significant and can result in a rapid thickening of the condensate film at OOc.

The initial condition for this problem is again based on symmetry, which requires

that (d8"/d4o)=0 = 0. Combining this condition with Equation (11-86) results in a fourth

order expression for 6":

2 ~ ~ ~ ~ ~ ~ / /f()+* fO (~ ff() ~ J(O) a2 2 x(O) 0 (11-91)

whose root of interest is determined by

A 12F jX(O) I f,1(0) 3 (J f 1(0)1

R = f_(0)

C 2X(O)(11-92)
De

c~~ B xO6(O . B2-4 A C - B
-"(0 ) 22,A

Equation (11-86) can be solved numerically to obtain the condensate film thickness. The

other heat transfer parameters are determined as before (Equations (11-39) and (11-56)).

It can be shown that this formulation reduces to the models developed for circular

tubes. Consider the case where k=1 and 1/Bo=O (circular tube with no surface tension);

Equation (11-84) reduces to:

I = d{2Fsi*+8P sin24o + 26sin.} V(193)
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which is identical to that developed by Rose [281 where

(. pl= 1 . (11-94)

For the case where k=1, P=O and 1lBo=O (circular tube, no surface tension and no

pressure gradient), Equation (11-84) reduces to the Shekriladze-Gomelauri [211 model.

F. MIXED CONVECTION CONDENSATION ON AN ELLIPTICAL CYLINDER

WITH VAPOR BOUNDARY LAYER SEPARATION (FUJI[ ET AL. [221 TYPE

ANALYSIS)

The mixed convection model developed by Shekriladze and Gomelauri [211 has

been used because of its simplicity ard ease of solution. However, since the interfacial

shear is approximated by an asymptotic expression based on an infinite condensation

rate and uses potential flow outside the vapor boundary-layer (which is always

positive), vapor boundary-layer separation does not occur. As described in Chapter 1,

Fujii et al. [221 modified the interfacial shear stress expression by simultaneously

solving the boundary-layer equations for the condensate and vapor ensuring compatibil-

ity at the condensate/vapor interface. This technique allows for a more precise

description of the condensation problem under forced convection conditions and

includes vapor boundary-layer separation.

Consider a pure saturated vapor at temperature Tsar, flowing downward over a

horizontal elliptical cylinder with free stream velocity, U.. The elliptical cylinder is

oriented such that its major axis is aligned with the direction of gravity and vap flow.

Due to the complexities of solving the two-phase boundary-layer equation, it is as led

that the only forces acting on the condensate film element are gravity and v. is

forces. Surface tension and pressure gradient are neglected which is reasonable h e

they were found to have negligible influence under most conditions (discusset n
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Chapter IV). Other assumptions are the same as in Section II.E. The vapor is assumed

to be in thermal equilibrium such that the energy equation for the vapor need not be

considered in the analysis. The only forces acting on an element in the vapor boundary-

layer (see Figure 11-6) are inertia, viscosity and pressure gradient, which is impressed

upon the element by potential flow outside the vapor boundary-layer. The tangential

'I

Figure 11-6. Condensate Film and Vapor Elements for Mixed Convection using
Fujii et al. [221 Type Model.

velocity at the vapor/condensate interface is much smaller than the potential velocity

outside the vapor boundary-layer and can therefore be assumed to be negligible. Based

on the above assumptions, conservation of mass and momentum for the vapor boundary-

layer are given by

au _ v
__ = 0 (continuit) (a)
ay (TI-95)

Fujt et al. [22 Type Model.

- -L'=0 (contii (momety m) (b)x ay 47
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For the condensate film, conservation of mass, momentum and energy are given by

TI + gI (*) = 0 (momentum) (a)
p, ay2 (11-96)

}- h (T.- T.., (energy and mass) (b)

where conservation of mass and energy have been combined as in previous sections.

Boundary conditions for this system of equations are given by

=-o = V =-o = 0

(11-97)
U =U, U~ =0

y--6+A

where A is the vapor boundary-layer thickness. The compatibility conditions at the

interface require that

U=a = uY=6 =0, in (, a = TI, (MY) =a
N ,y (11-98)

and -pV,. - 1 , _

where the last compatibility relation is the condensation mass flux rate (i.e. for a given

surface area, the amount of vapor condensed must equal the increase in the mass of the

film).

The technique for solving the vapor boundary-layer momentum equation involves

an approximate integral technique developed by Truckenbrodt [231. The initial problem

development follows the method of Pohlhausen [361. The continuity and momentum

equations (Equations (II-95a) and (I1-95b)), are integrated over the thickness of the

boundary layer from y = 6 to y = 8+A and then combined to eliminate the normal

component of vapor velocity, V, resulting in a momentum integral equation

1 d {U2 A dU _ V6 _I9

N '&2 -!'- = -+ .(11-99)
8P, U;
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where A1 and A2 are the vapor boundary layer displacement and momentum thicknesses

given respectively by

A I f661 - IA
(11-100)

and -2 I- dy

V6 is the normal component of vapor velocity at the vapor/condensate interface due to

the condensation process itself and is sometimes called the vapor boundary-layer suction

velocity. Differentiating the A2 term in Equation (11-99) and rearranging the equation

results in:

dA2 , A2 dU,( A2 Vb _ (I6-101)

dx U. 2+dx j Uf P U 2

With some further algebraic manipulation this yields

d 2 Pvj 2 T6 "2 22 *

d{A pV 2 8 A A ) A p, dU, + V8 A'2  Pv (11-102)

To solve this expression, the vapor velocity distribution across the boundary-layer

thickness must be determined. This distribution is a function of a pressure gradient

parameter, 1c, and a suction parameter, x,, given by Tuckenbrodt [23] as

A2 Pd •li V& A2 PV (111-03)
' dx 

'V

Truckenbrodt [23] defined a shear function f(xicl) and a shape function H(x,xl) as:
r) r A2 ad A ([1-104)

and H(ucK,)
qV U# A2

and a dimensionless function, Z, given by

R= Re,( )2 (11-105)
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Equation (11-102) becomes

D 2 U [f - (2+H) ic -i] (11-106)

Based on existing theoretical data (Schlicting [371 and Torda 1381), Truckenbrodt [23J

proposed a simple linear approximation for Equation (11-106) given by

D- = [0-441(1-2r,) - 6ic (11-107)

Substituting Equations (II-103),(II-105) and (11-106) into Equation (11-107) and defining

dimensionless velocities by

* U and ý =- L8 (11-108)
U. U.

results in

dZ6 14 D, 0.441[1 +2PV• ] 6 X(40) 60 (11-109)

The dimensionless suction velocity, V5, is determined by transforming the compatibility

relation involving the condensate mass flux rate in Equation (11-98) and is given by

a = e G (II-110)

where G is a dimensionless parameter which is proportional to the condensation rate and

is defined by

G =1 (T,.-Td) P1 it (II-111)
thIn, hjg Pv •lv

Combining Equations (11-109) and (II-110), the governing equation for the vapor-

boundary layer becomes

4d= -1 X( .4~)o 1  [1 - 2 GýZ 6 DdýZl (11.112)
* F+ D, 8" X(4W)
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The initial condition for Equation (11-112) comes from symmetry and is given by

Combining Equations (I-112) and (11-113) results in

6 D, (dU# (ýZ-))2 0.882 G -L(0) vf -- 0.441 - (-114)

This is a quadratic equation from which Z(0) is determined to be,

Z(0) = -0.0735 G X(0) dj* O)-' ID,- d* •-4=0 a *o)
12(11-115)

+ -0735 G---)d . + 0.0735 X(0)
~~.D G i- do 8,. *(0)J D, 0.0735 I 4

The interfacial shear is determined from Equation (11-104). Truckenbrodt [231

provides a simple approximation for the shear function, f(x,Kl), given by

f (,K 1 ) = 3.22 Fr. (Ka+X) (1I-116)

where

K = 0.0682 + 0.174 K (11-117)

K and x, are modified by combining Equations (11-103) and (11-105):

xdU-Z and x, 2 .I (11118
X() d).

Dimensionless interfacial shear is defined by:

_ 2 • %(II- 119)
2 -r

P" U!

An expression for dimensionless shear can then be obtained by combining Equations (11-

104), (11-105) and (11-116):

= 6.44-.4 lK (KY+K) (11-120)
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The governing equations for the condensate film are solved in the usual manner.

The momentum equation (Equation (II-96a)), is integrated to solve for condensate film

velocity,

Pig ( •) s(111

The mean velocity is determined from Equation (11-24):

Um g f -- (II-122)
fit 3 2ilt

Substituting Equation (11-122) into the energy/continuity equation (Equation (II-96b))

and multiplying both sides of the equation by
tj2 D2

,1 .D hf (II-123)
2,

results in

1 F +1  d6 8f 21+~ r (11- 124)
a. X(4,) d4) '3 4G J

Carrying out the differentiation of Equation (11-124) and rearranging results in the

ordinary differential equation,

x(@) F dA 41 1 d ý8 *3

dA D, 3 do 4 G d' (11-125)
dý 1 1 - *2

2 G

which, due to the symmetry of the problem, has the initial condition,

(d =) 0 (11-126)
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Combining Equations (11-125) and (11- 126) results in

D(O _ ± '0 - ! -I (ý_z ao ) 3o = 0 (11-127)D, 3 dtd ) o 4 G t =

from which 8*(0) can be determined by numerical methods.

For the case of k = 1 (circular tube), Equation (II-125) reduces to the analysis of

Fujii et al. [221 as corrected by Lee and Rose [251. The differential equation for the

vapor boundary-layer (Equation (11-112)) and for the condensate film (Equation (II-

125)) are solved simultaneously using the compatibility relations of Equations (11-117),

(11-118) and (11-120). At the point of vapor boundary-layer separation, the interfacial

shear stress becomes negative. Downstream of this point, it is assumed that the shear

stress at the vapor/condensate interface is negligible and a simple Nusselt type analysis

is used for the remainder of the elliptical surface. The heat transfer parameters are

determined as before (Equations (11-39) and (11-56)).
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111. NUMERICAL METHOD

In the theoretical development, the governing equations for each model were

either reduced to a single first order ordinary differential equation (ODE) or to a

simultaneous solution of a system of first order ODEs of the form

dy = fi(x,y)
dx

Initial conditions were determined from the symmetry of the problem which required

that both the slopes of the condensate film and vapor boundary-layer wer,. zero at 4 =

0. These systems of equations are solved using one of the forward stepping numerical

methods.

A. SOLUTION TECHNIQUE FOR THE NUSSELT [51 AND SHEKRILADZE-

GOMELAURI [211 ANALYSIS METHODS

Each analysis method resulted in a single first order ODE of the form given by

Equation (111-1). The solution of this equation provides the condensate film thickness

along the elliptical tube surface. Many numerical methods are available to solve this

type of problem, each with its own advantages and disadvantages. For this study, a

fifth order Adams method predictor-corrector algorithm was developed from Crandall

1391. The Adams methods are multi-step techniques which use finite difference type

operators incorporating previously determined points (hence the term multi-step) to

determine the value corresponding to the next step. These methods provide the same

accuracy and are more efficient than the Runge-Kutta (single step) methods but re

restricted to a fixed step size. The Adams method employed in this study uses an

Adams-Bashforth explicit method [391 to predict the value of the dependent variable at

the next step and then an Adams-Moulton implicit method [391 to correct this predicted

54



value. This method is not self starting and requires determination of the first four

points. To start-up the algorithm, lower order Adams methods were used to obtain these

four points. The recurrence formulae for this algorithm are given by

Ys = YS1 + 0 Ekfn@Ayk (11I-2)
k

where x is the independent variable, y is the dependent variable, h is the step size, s is

the step number for which y is to be determined, k are the points determined in

previous steps and Ok are the coefficients provided in Table III-1 and 111-2.

TABLE 111-1. RECURRENCE COEFFICIENTS FOR PREDICTOR FORMULA

Pk TRUNCA-
FORMULA TION

s-5 s-4 s-3 s-2 s-1 ERROR

(1) 1 O(h 2 )

(2) -1/2 3/2 O(h 3)

(3) 5/12 -16/12 23/12 O(h 4)

(4) -9/24 37/24 -59/24 55/24 0(h 5)

TABLE 111-2. RECURRENCE COEFFICIENTS FOR CORRECTOR FORMULA

Pk TRUNCA-
FORMULA TION

s-4 s-3 s-2 s-1 s ERROR

(1) 1/2 1/2 0(h3)

(2) -1/12 8/12 5/12 0(h 4 )

(3) 1/24 -5/24 19/24 9/24 0(h 5 )

(4) -19/720 106/720 -264/720 646/720 251/720 O(h6 )

The algorithm used in the solution for mixed convection condensation with surface

tension and pressure gradient (Section II.E) is provided in Appendix (B).
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For many applications, this type of start-up routine would normally not provide

sufficient accuracy. However, no difficulties were encountered using this numerical

procedure fo- solving the asymptotic interfacial shear stress models. Solution

convergence was obtained for a.i angle step size of 0.1'. The difference between an

angle step size of 1.00 and 0.10 wa., less than 1%.

B. SOLUTION TECHNIQUE FOR THE FUJII ET AL. [22] ANALYSIS METHOD

Reduction of the governint, equations resulted in a system of two simultaneous

ODEs, one for the momentum thickness of the vapor boundary-layer and one for the

condensate film thickness. The Ad_ýis method previously described did not provide

sufficient accuracy to solve this two-phase boundary layer problem. In particular, the

system of equations exhibited a stiffness problem, i.e., the numerical method could not

accurately solve the vapor boundary-layer ODE over the first several steps even with

an angle step size of 0.0010. To obtain sufficient accuracy, a much smaller step size

would be required which would significantly reduce the efficiency of the computer

algorithm. Lee [40] indicated that similar difficulties had been encountered when Lee

and Rose [25] solved the same equations for a horizontal circular cylinder. Lee and

Rose 1251 used a Runge-Kutta method which permitted variable stcp size. Thus, the step

size could be reduced sufficiently to obtain the required accuracy for the vapor

boundary-layer ODE over the front of the tube and then increased over the remainder

of the tube to improve the efficiency of the algorithm. Utilizing this numerical,

procedure, they were able to solve the system of equations over most of the range of

dimensionless parameters (F and G). However, in some cases (specifically large values

of F and G), the system of equations were still too stiff for solution.

To overcome the problem of stiffness, a numerical problem solver (IVPAG) from

the International Matlhematical and Statistical Library (IMSL) 1411 was used. This
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algorithm uses Gear's stiff method 1421 to efficiently solve systems in which stiffness

is a problem. However, as in the study of Lee and Rose 1251, this method could still not

solve the two-phase boundary-layer equations over the entire range of dimensionless

parameters considered, but did cover the practical ranges of the parameters.

It was originally conceived that the computer algorithm would progress around

the tube surface until the criteria for vapor boundary-layer separation was reached

(dr 6/di < 0). At this point, the model would shift from solution of the two-phase

boundary-layer equations to the simple Nusselt model. However, the numerical solver

encountered difficulties in solving the system of equations as it approached the point

of vapor boundary-layer separation. Therefore, the solution method was changed to a

two step procedure. In the first step, the system of equations were solved until the

computer algorithm indicated a problem had been reached (usually the algorithm

indicated a stiffness problem had been encountered). The interfacial shear stress data

was analyzed to verify that this problem was the result of rapidly changing conditions

associated with vapor boundary-layer separation. Therefore, to facilitate the solution,

vapor boundary-layer separation was assumed to have occurred if the interfacial shear

stress at the last point obtainable was less than ten percent of the maximum interfacial

shear stress observed over the surface. At this point, the problem solver was within one

to two step sizes of the actual separation point (for a step size of 0.10, the computed

separation point was therefore within 0.20 of the actual separation point). The second

step involved re-running the analysis using the computed separation point calculated

in the first step as the point at which the two-phase model was switched to the simple

Nusselt model. A converged solution was obtained for an angle step size of 0.1'. The

algorithm for solving the two-phase model is provided in Appendix (C).
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IV. RESULTS AND DISCUSSION

When comparing solutions for an elliptical tube with those of a circular tube,

equivalent surface areas have been used. The effective diameter of the equivalent

circular cylinder is given by Equation (11-16). The dimensionless streamwise length x*,

defined as the ratio of the streamwise length, x, to the half perimeter length and given

by

X* 2 , (IV-1)

SDe
is used when comparing local values of film thickness and heat-transfer coefficients.

Its use enables direct comparison between elliptical and circular tubes since it represents

an equivalent fraction of the total perimeter from the top of the tube to the

dimensionless point.

A practical range of eccentricities for an elliptical tube with major axis aligned

vertically is 0.3 < k < 0.6 . The lower limit of 0.3 is based on discussions with a tube

manufacturer (Reference [431) in which the elliptical tube is formed by pressing a

circular tube with a roller assembly to obtain the proper major and minor axis

dimensions. Roller contact points would be evenly spaced to maintain the elliptical

curvature and to prevent an overly flat surface. The upper limit is chosen as the

eccentricity in which noticeable effects were observed in the heat transfer

characteristics (as discussed in this chapter).

A. EFFECT OF GRAVITY

As previously noted (Section l.A), some improvement in condensation heat transfer

is expected for an elliptical tube in quiescent vapor compared to a circular one since

more of the surface is aligned with gravity. By increasing the "effect" of gravity on the
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condensate film, the mean condensate velocity at a given streamwise location is

increased which results in a thinning of the condensate film and increased heat

transfer. The gravity function, fl(O), defined in Equation (11-21) is shown in Figure IV-

1.
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Figure IV-1. Gravity Function, fj(4) vs. Streamwise Length, x.

As the elliptical tube approaches a flat plate configuration (k - 0), the effect of gravity

increases to sweep the condensate film along the tube surface. The effect of gravity on

the local film thickness is shown in Figure IV-2 for two eccentricities. As can be seen,

the condensate film is thinned over the front and rear portion of the tube compared to

a circular tube but is slightly thicker in the middle region. The thickness of the film

is controlled by the rate of condensation (which is dependent on condensate film

thickness) and the condensate velocity (which is also dependent on condensate film

thickness and gravity). Near the top of the elliptical tube, the larger gravity component
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increases the condensate velocity relative to that of a circular tube resulting in a

thinner condensate film. This thinner film, however, results in an increased

condensation rate which tends to thicken the film further downstream. Since the

elliptical tube has a greater condensation rate near the top of the tube, the film thickens

a.

aECCENTRICITYQ•- a - .0
S.- 0.5

U,
U,

u.1.
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Figure IV-2. Local Film Thickness for Varying Eccentricity (k).

more rapidly compared to that on a circular tube causing the relatively thicker film in

the middle region as seen in the figure. At 90', the gravity component is the same as on

a circular tube and so has no relative thinning effect. Over the rear half of the tube,

the reduced condensation rate (as a result of this thicker condensate film) and increased

velocity due to the larger gravity component relative to a circular tube results in

continued thickening of the film on the elliptical tube, but at a slower rate than that

on a circular tube. Eventually, the elliptical tube film thickness is again thinner than

on a circular tube for the same dimensionless streamwise length. The condensate film
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thickness is therefore determined by a balance of the effects of two effects: increased

condensate velocity (which tends to thin the film) and increased condensation rate

(which tends to thicken the film).

The overall effect on the mean heat-transfer coefficient (given as a mean Nusselt

number) is shown in Figure IV-3. To compare the elliptical tube with a circular tube,

the leading coefficient of the Nusselt solution (Equation I-3b) is plotted against

C.

0.2

I I i i i I iIi I i I41 i I I 1141I I I II11

-1 2

10- H I0° 10' 102i0 0 0

Figure IV-3. Mean Nu Leading Coefficient for Varying k.

eccentricity. Solutions for a circular cylinder (k = 1.0) and a vertical flat plate (k -0,

L =-2a) agree well with the results of Nusselt [5]. For the horizontal flat plate (k -),

the heat-transfer coefficient approaches zero as would be predicted by the Nusselt

model. For the practical range of eccentricities (0.3 < k < 0.6), it can be seen that the

effect of placing more of the tube surface in the direction of gravity is to increase the

mean heat-transfer coefficient by 7% for k = 0.6 and 13% for k = 0.3. Conversely, by
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placing more of the tube surface perpendicular to the direction of gravity (i.e.,

approaching a horizontal flat plate), the mean heat-transfer coefficient decreases as

expected. These results are in agreement with earlier elliptical tube studies [32,331.

B. EFFECT OF VAPOR VELOCITY

1. Asymptotic Interfacial Shear Stress Approximation

The streamlined shape of the elliptical tube has an effect on the vapor flow

over the tube. The vapor velocity function, f2(0), defined by Equation (11-47) is shown

in Figure IV-4 versus dimensionless streamwise length x'. As seen in the figure, the

elliptical tube experiences higher vapor velocities than a circular tube at the front and

rear of the tube but a lower vapor velocity in the central region. Using a balance of the
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Figure IV-4. Vapor Velocity Function, f2(O), for Varying k.
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factors which thicken and thin the condensate film. for the case of pure forced

convection (F - 0, no gravity effect), the higher relative vapor velocity at the top of the

elliptical tube results in a larger interfacial shear stress and hence a thinner condensate

film and larger condensation rate compared to a circular tube. With more condensate

flowing into the middle section of the elliptical tube and a lower relative vapor

velocity, the condensate film thickens more rapidly than in the case of a circular tube.

As the condensate flows over the rear of the tube, the decreased condensation rate (due

to the thicker film in the middle region) and increased vapor shear results in thinner

film compared to the circular tube. Figure IV-5 shows these effects in detail for a
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Figure IV-5. Effect of Vapor Velocity on Local Film Thickness for a Circular
Tube and Elliptical Tube (k = 0.6).

circular tube (k = 1) and an elliptical tube (k = 0.6) using the asymptotic interfacial

shear -trer (Nhekrilad7e-Gomelauri) approximation and the two-phase boundary layer
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shear stress (Fujii et al.) approximation (to be discussed later). Whercas the gravitv

effect (f1 ((ý)) described in Section IV%.A was always larger for the elliptical tube (see

Figure IV-1), the vapor shear effect f2(0) is larger or smaller depending on the section

of the tube to be analyzed (see Figure IV-4). The overall effect of vapor shear using the

Shekriladze-Gomelauri [21] model is to reduce (by about 29 in the practical range of

eccentricities) the elliptical tube mean heat-transfer coefficient relative to an

equivalent circular tube.

In the mixed convection region, the mean heat-transfer coefficient of an elliptical

tube is increased or decreased compared to a circular tube depending on the relative

magnitudes of the vapor shear and gravity effects. This relative magnitude is measured

by dimensionless parameter, F. For large F, gravity is dominant and the heat-transfer

coefficient trend is described in Section IV.A . For small F, vapor shear is dominant

and the trends described in this section determine the heat transfer. Figure IV-6shows
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Figure IV-6. Effects of Vapor Velocity on Mean Nu Using the Asymptotic
Interfacial Shear Stress Approximation Analysis Method.
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the effect of F on the mean heat-transfer coefficient for varying eccentricity. As F -

-, corresponding to free convection condensation, solutions for elliptical and circular

tubes match those reported in Section IV.A. For the case of a circular tube for all

values of F, the present numerical solutions are within 0.4% of an equation by Rose 1281:

R-i 0.9 + 0.728 F'r (IV-2)
(1 + 3.44 FA + F )'/4

2. Two-Phase Boundary-Layer Shear Stress Approximation

Vapor boundary-layer separation is not predicted by the asymptotic shear

stress approximation since the interfacial shear is based on potential flow outside the

vapor boundary-layer which is always positive. Solution of the two-phase boundary-

layer equations for the condensate and vapor, with matched shear stress at the interface,

allows determination of the vapor boundary-layer separation point and its effect on the

condensation heat transfer. The analysis also introduces a dimensionless parameter G

which is proportional to the condensation rate. Figure IV-5 compares the asymptotic

shear stress approximation with the two-phase boundary layer shear stress approxima-

tion for a large condensation rate (large G) for a circular and elliptical tube (k = 0.6).

Over the forward and middle sections of the tube, the general trends are as described

in Section IV.B.1 for the asymptotic shear stress approximation. Over the rear of the

tube, however, as the separation point is approached, the condensate film thickens more

rapidly due to the reduced vapor shear effect (r - 0). It can be seen that for the

elliptical tube, the separation point occurs further downstream than for the circular

tube and thus this rapid thickening is delayed. By delaying separation, more of the tube

surface has a thinner film. This serves to increase the heat-transfer coefficient for an

elliptical tube compared to a circular tube if it were the only effect considered.
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In total, however, the mean heat-transfer coefficient is affected by a

combination of gravity, vapor shear and boundary-layer separation. Figure IV-7shows

the effect of F, G and k on the vapor boundary-layer separation point (xS*). As

previously explained (Chapter III), solutions could not be obtained for all possible F and

G combinations (particularly large F and G). In general, as F and G increase (less vapor

shear and higher condensation rate), or k decreases (more elliptical), the vapor

separation point shifts toward the rear of the tube. For low condensation rates (small

G) corresponding to low vapor suction, vapor separation occurs near the positions

obtained for single phase separation without suction. Little change occurs in the

separation point location as vapor velocity is varied. For large condensation rates (large

G), the vapor boundary-layer experiences high suction which shifts the separation point

downstream (i.e., as G increases, xs increases). As vapor velocity is decreased

(increasing F), the separation point shifts further downstream. As k decreases (more

elliptical), the vapor boundary-layer separation point moves further downstream when

compared to a circular tube under all conditions of F and G. At high F and G, the vapor

boundary-layer separation points come together at the rear of the tube for both the

elliptical and circular tube.

Figure IV-8shows the influence that the above effects (vapor shear, gravity,

condensation rate and eccentricity) have on the mean heat-transfer coefficient. The

solutions for k = 1 agree with the results of Fujii et al. [22] as corrected by Lee and Rose

[251. Similar trends were obtained for the elliptical tubes. For large values of

condensation rate (large G), the two-phase boundary-layer shear stress analysis agrees

closely with the asymptotic shear stress analysis method as expected since the latter

assumes an infinite condensation rate. For decreasing k, the results for an elliptical

tube tend to show a reduction in heat transfer at low F (compared to a circular tube)
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Figure IV/-7. Vapor Separation Point Location with Varying F, G and k.
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Figure IV-8. Effects of Vapor Velocity and Vapor Separation on Mean Nu using
the Two-Phase Boundary-Layer Approximation Analysis Method.

and an increase in heat transfer at high F, as previously mentioned. The cross-over

point from reduction to improvement occurs at increasing values of F as G decreases.

For large values of F, the results converge to the Nusselt analysis. This shift in the

cross-over point is attributed to the change in the vapor boundary-layer separation point

with varying condensation and vapor velocity (varying Gand F). As seen in Figure IV-

7, for large condensation rate (G = 5.5) and low vapor velocity (large F), the large vapor

suction causes a delay in vapor boundary-layer separation such that it occurs at

essentially the same streamwise location for all eccentricities. As velocity increases (F

becomes smaller) the separation point shifts forward at different rates dependent on

eccentricity which is evidenced by the diverging curves in Figure IV-7c. Since early

vapor boundary-layer separation results in a reduction in heat transfer due to rapid

thickening of the condensate film, the circular tube (k = 1) experiences more of a
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reduction in heat transfer compared to an elliptical tube. The effect of delaying

separation is to cause a thinning in the mean film thickness for the tube. In the

balance, where the streamwise component of gravity and the shift in vapor boundary-

layer separation are positive effects (i.e., both contribute to a relative thinning of the

elliptical tube condensate film compared to a circular tube) and vapor shear is a

negative effect (i.e., lower shear contributes to a relative thickening of the elliptical

tube condensate film compared to a circular tube), delays in vapor separation move the

cross-over point from gravity dominant to shear dominant heat transfer. For the case

of low G in Figure IV-7a, there is no noticeable shifting of the vapor boundary-layer

separation point as F is varied. Thus the vapor boundary-layer separation point

contribution does not change with vapor velocity (F) to the balance and the cross-over

point occurs at lower velocities (larger F). The overall effect of vapor shear using this

analysis is typically a slight reduction (< 2%) in the heat-transfer coefficient for an

elliptical tube compared to an equivalent surface area circular tube, dependent on the

magnitude of the condensation rate parameter, G.

Figures IV-9 and IV-10 show the effects of vapor boundary-layer separation

on the local film thickness and heat-transfer coefficient for a given dimensionless

streamwise distance. For low F and G, the separation point occurs relatively early, but

is significantly delayed when using an elliptical tube. As F increases (vapor velocity

decreases), the separation points remain at their same respective streamwise locations.

The areas under the curves in Figure IV-10 represent the total heat transfer. Bearing

this in mind, the comparison between elliptical and circular tubes is made a little easier.

At high F (for given G), the area under the curve for an elliptical tube exceeds that for

a circular tube while at low F, the opposite is true. However, for a given eccentricity,

the values of Xs° are the same for varying F (as noted earlier).
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As G increases (increasing condensation rate and suction), vapor boundary-layer

separation is further delayed (compared to low G) and is virtually eliminated at high

F. Separation is always delayed for an elliptical tube compared to a circular tube.
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C. EFFECT OF SURFACE TENSION

As noted in Section II.E, a condition exists for which d8"/d• becomes infinite at

some critical angle 0c. What is actually happening can be discerned from Figure IV-11

which shows the surface tension function f4(0) versus x" for varying eccentricity.

Surface tension causes a favorable pressure gradient over the front half of the elliptical

tube and an adverse pressure gradient over the back half. The severity of the pressure

gradient is localized to small regions at the top and bottom of the elliptical tube where
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Figure IV-11. Surface Tension Function, f4(O) for Varying Eccentricity.

change in surface curvature is most severe. Therefore, it is most significant for small

values of eccentricity. The above analysis explains the reason for condensate flow

instability discussed in Section lI.E and predicted by Equation (I[-90).
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Further discussion of surface tension is restricted to those cases in which a

solution could be obtained over at least 90% of the tube surface. This restriction was

arbitrarily chosen based on the small amount of heat transfer which occurs on the lower

part of the tube and would therefore have minimal impact on the accuracy of the

results. Figure IV-12 shows the effects of surface tension on the mean heat-transfer

coefficient for k = 0.6 and 0.4 . The Bond number, Bo, gives the relative effect of

inertia to surface tension. Values of 1/Bo of 0.01 (typical for steam) and 0.001 (typical

for refrigerants) as well as 1/Bo = 0 have been shown on the figure. A number of

interesting points can be highlighted. Firstly, the surface tension effect is much smaller

for highly wetting refrigerants, as expected. Secondly, inclusion of surface tension

leads to a small decrease in the mean heat-transfer coefficient (< 2%) over the whole

range of F for the practical range of eccentricities, suggesting that any thinning of the

condensate film over the top half of the tube is more than offset by a thickening over

the lower half. As eccentricity decreases, this discrepancy is accentuated. Finally,

surface tension effects are felt more in the free convection region (high F) than in the

forced convection region (low F) as film thickness becomes dominated by vapor shear.

Krupiczka [291 used the curvature of the condensate film surface to analyze

surface tension on a horizontal circular cylinder. He determined that the effect of

surface tension was only significant over the bottom portion of the tube. This fact

implies that since the film is very thin over the top of the tube, its curvature is very

close to that of the tube surface itself, which, for a circular tube results in no surface

tension effect (constant radius of curvature). As the condensate flows around the lower

half of the circular tube, the film curvature no longer follows the tube surface. Rather,

th,. radius of curvature is increasing resulting in a small improvement in the heat-

transfer coefficient. A similar analysis can be applied to the elliptical tube. Over the
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top half of the tube where the condensate film is thinnest, modeling the surface tension

effect using the curvature of the tube surface is valid. However, the adverse pressure

gradient over the lower half of the tube is probably not as severe as seen in Figure IV-

11. Over this portion of the tube, the film is thicker and its decreasing surface

curvature is not as severe as the tube surface curvature. The conclusion drawn from

this analysis is that surface tension does not have a significant effect on the mean heat-

transfer coefficient for an elliptical tube.

D. EFFECT OF PRESSURE GRADIENT

The effect of pressure gradient was analyzed using the asymptotic shear stress

approximation (similar to Rose [281 for a circular tube). In this analysis, the pressure

gradient in the condensate film was assumed to be due to the pressure gradient

impressed on the condensate by vapor potential flow. As in the case of surface tension,

there is a relationship between parameters P and F (Equation 11-89) for which a solution

could not be obtained for the entire tube. Figure IV-13 shows the pressure gradient

function versus x° for varying k which sets up a favorable pressure gradient over the

top of the tube and an adverse pressure gradient over the lower half of the tube. The

effect of eccentricity is to shift the point of maximum pressure gradient to the front

and rear of the tube. Thus, 40C shifts downstream for an elliptical tube compared to a

circular tube for similar P and F. This is a result of the more streamlined shape and the

smaller resultant pressure drop over the streamwise length of an elliptical tube.

As in the analysis of surface tension, discussion is limited to those cases for which

solutions could be obtained over the entire tube. When pressure gradient was included

in the momentum equation of the condensate film, solutions agreed with the results of

Rose [281 for a circular tube, yielding a maximum 5% decrease in the heat-transfer

coefficient over the entire range of F compared to the case with pressure gradient
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Figure IV-13. Pressure Gradient Function, f3 (0), for Varying Eccentricity.

neglected. Figure IV-14 shows the mean heat-transfer coefficient for a circular tube

(k = 1) for varying F and P. The favorable pressure gradient increases the mean

condensate velocity resulting in a thinner film and an increased mean heat-transfer

coefficient over the top of the tube. This increase is offset by the adverse pressure

gradient which slows the condensate film velocity over the lower half of the tube.

thickens the film and decreases the mean heat-transfer coefficient. For an eccentricity

of 0.6, Figure IV- 15 compares the effect of pressure gradient for an elliptical tube with

those for a circular tube for varying F and P. For both the circular and elliptical tubes,

the effect of pressure gradient provides a slight reduction in condensation heat transfer.

Figure IV-15 indicates that the reduction in heat transfer was less for the elliptical tube

compared to the circular tube as a result of the more favorable potential velocity

distribution around the ellipse.
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E. EFFECT OF VAPOR PRESSURE DROP

The previous results indicate that vapor shear decreases the heat-transfer

coefficient for an elliptical tube when compared to a circular tube. However, a

consideration not yet discussed is that the vapor pressure drop across an elliptical tube

is significantly smaller than a circular tube for the same free-stream velocity.

Alternatively, for a given pressure drop, the free-stream velocity is greater for the

elliptical tube. Since very little data is available for two-phase drag coefficients around

tubes, single-phase data was used where the drag coefficient for the tube is due entirely

to form drag. Values of CD for a circular (k = 1) and an elliptical tube (k = 0.5) were

estimated to be approximately 1.2 and 0.6 respectively (White [441). For steam with Tsar=

600 C condensing on a horizontal tube with Twali= 40 0 C and U.= 25 m/s for the circular

tube, the corresponding vapor velocity for the elliptical tube, for the same pressure

drop, was calculated to be U.= 35 m/s. The resulting values of.F are therefore 0.0257

and 0.0132 for the circular and elliptical tubes respectively. Using the asymptotic shear

stress assumption for both values of F gives an increase in the heat transfer for an

elliptical tube of 16.3% when compared to a circular tube. Using the two-phase

boundary-layer shear stress assumption gives a corresponding increase of 17.1%.

Therefore, though the effect of vapor shear alone results in a reduction of the heat-

transfer coefficient (as discussed in Section IV.B), when the streamlined shape of the

elliptical tube and its effect on the vapor pressure drop is taken into account (allowing

for higher U. for a given pressure drop), there is an increase in the heat-transfer

coefficient when compared to a circular cylinder.
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F. INSIDE HEAT TRANSFER COEFFICIENT

So far only the outside heat-transfer coefficient has been discussed. In real

condensers, it is the overall heat-transfer coefficient which is important and so

consideration must also be given to the single-phase convective heat transfer occurring

inside the elliptical tube. A preliminary survey of the literature (Incropera and Dewitt

[451) shows that for turbulent flow conditions where the Prandtl number is greater than

0.5 (which is true for most practical condensers), correlations developed for circular

tubes may be used with good accuracy to approximate the inside heat-traLsfer

coefficient for an elliptical tube if the hydraulic diameter is used in place of the

circular diameter. The hydraulic diameter is given by

4h = (IV-3)

where AC is the cross-sectional area of the tube and p is the inside perimeter of the tube.

The perimeter for an elliptical tube and an equivalent surface area circular tube is the

same. The cross-sectional area of an elliptical tube is given by

A = r a b (IV-4)

and is smaller than an equivalent surface area circular tube. Inside heat transfer

correlations for turbulent flow heat transfer inside a circular tube are typically of the

form [451

Nu ( ,% Re-o& ( = .P UDf (IV-5)

Thus, the inside heat-transfer coefficient is related to the hydraulic diameter by

-0:2 (IV-6)
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As an example, consider an elliptical tube with k = 0.5 and a major axis with a = 0.01

m. The equivalent circular tube would have a diameter of 0.0154 m. The ratio of the

heat. transfer coefficient of the elliptical tube to the circular tube is given by

__tio___ = (Ddu.tw-'2  (Ac),1u•-c.-J (IV -7)

thus,

a ;b 1.035 (IV-8)
______ (D12) 2

For this simple analysis, it can be seen that the inside heat-transfer coefficient of the

elliptical tube is 3.5% greater than the equivalent surface area circular tube. This

result, when added to the increase in the outside heat-transfer coefficient (for a given

pressure drop), would increase the overall heat-transfer coefficient of the condenser.
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V. CONCLUSIONS

Analyses of laminar film condensation on a horizontal elliptical tube were

conducted under conditions of free and forced convection, the latter using both an

asymptotic interfacial shear stress approximation as well as solution of the two-phase

boundary-layer equations. For the asymptotic shear stress approximation, the effects

of surface tension and pressure gradient were also included. Where possible, these

analyses have been validated against existing solutions for laminar film condensation

on a horizontal circular tube and a vertical flat plate.

Whether or not condensation heat transfer is improved for an elliptical tube

compared to an equivalent surface area circular tube is dependent on a balance of the

effects of gravity, vapor shear and vapor boundary-layer separation and the influence

these have on the thickness of the condensate film. Under quiescent vapor conditions

(no vapor shear or boundary-layer separation), gravity causes an increase (-10%) in the

heat transfer on an elliptical tube compared to a circular tube of the same surface area

due to an increase in "effective" gravity. Under conditions of forced convection, both

shear stress approximations indicate a small decrease (< 2%) in performance due to the

reduction in interfacial shear as a result of the better streamlined shape of the elliptical

tube when compared to the circular tube in the same free stream vapor flow. However,

when pressure drop effects are also considered, the higher allowable vapor velocity over

an elliptical tube (for the same pressure drop as a circular tube) results in an increase

in the mean heat-transfer coefficient of 15-20%. For conditions of mixed convection,

the condensate film thickness is controlled by both gravity and vapor shear effects. The

cross-over between heat transfer improvement (gravity dominant flow) and heat
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transfer reduction (vapor shear dominant flow) for the elliptical tube is dependent on

the vapor boundary-layer separation point. For large condensation rates (high vapor

suction), vapor boundary-layer separation is delayed and the cross-over point shifts to

higher velocities (smaller F). For low condensation rates (low vapor suction), movement

of the vapor boundary-layer separation point is minimal, resulting in a minor effect on

heat transfer and a cross-over point that shifts toward lower velocities (large F).

Pressure gradient and surface tension each lead to a small decrease in the mean heat-

transfer coefficient (< 2%) for an elliptical tube.

In general, therefore, the outside heat-transfer coefficient of a condenser tube is

improved by using an elliptical tube geometry. Approximition of the singke-phasc

inside heat-transfer coefficient using a hydraulic diameter and a Seider-Tate type

correlation indicates that the elliptical tube also has better inside heat transfer

performance compared to an equivalent surface area circular tube. Thus, the overall

heat-transfer coefficient should be improved.
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VI. RECOMMENDATIONS

This study represents an initial step in determining if a shell-and-tube condenser

using horizontal elliptical tubes has better heat transfer than a comparable circular tube

bundle. The effects of multi-tube arrangements (i.e., the influence of adjacent tubes

and the spacing between tubes) on vapor flow characteristics needs to be evaluated to

determine if further improvements in the overall heat-transfer coefficient can be

achieved. It is suspected that the interfacial shear of the condensate film on elliptical

tubes will be further reduced but the corresponding reduction in vapor pressure drop

across the condenser will result in a net gain in heat transfer compared to a circular

tube bundle. An analysis similar to that conducted by Aoune and Burnside [46, 471 can

be used to evaluate multi-tube arrangements.

Further studies should be conducted on a single elliptical tube to better determine

the effect of surface tension on heat transfer. The surface tension model used in this

study was based only on the curvature of the tube surface and does not take into

account the relatively thicker film over the lower half of the tube. The curvature of

the actual condensate film surface should be analyzed in a manner similar to Krupiczka

[29). This ana.Ysis, together with the asymptotic shear stress assumption, would involve

the solution of a second order ODE.

Analysis of the effect of offsetting the elliptical tube at an angle, a, with respect

to vapor flow and gravity must be conducted to determine its effect on the heat-

transfer performance of the tube. This is important since in real condensers, vapor will

approach the tube at various angles. Additionally, since the elliptical tube is a

streamlined body, vapor flow in a direction other than the direction of the major axis
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may result in a lifting force on the tube which may result in tube vibration and wear.

These effects would have to be studied and methods to minimize any resultant vibration

must found. The problems associated with joining elliptical tubes to the condenser tube

sheet and baffle plates also needs to be addressed.

Finally, experiments must be conducted on elliptical tubes to validate the

predictions of these theoretical models.
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APPENDIX A - DERIVATION OF TANGENTIAL VAPOR VELOCITY OVER AN

ELLIPTICAL TUBE FROM POTENTIAL FLOW THEORY

The basic technique used to determine fluid flow velocity over a body is to

employ a conformal transformation to translate the body from one complex plane into

another complex plane. From this, the velocity of the transformed body can be readily

computed using potential theory. For this particular application, the fluid velocity

along the surface of a circular cylinder is determined and then transformed into the

complex plane in which the cylinder has an elliptical shape.

Consider a circular cylinder in the complex plan-, zl,as shown in Figure A-1. The

surface of the circle is defined by

Z! =Cei' (a)

(A-l)

2 2 = 2
X1 +y c (b)

The conformal transform to translate the circular body from the z, plane to an elliptical

body in the z, plane is given by

z12 - -1 (A-2)
z1

thus

1l + iyl I +' (A-3)

The real and imaginary coordinates in the z2 plane are given by

1 and Y 2 = Yt(-I) (A-4)
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Figure A-i. Circular Cylinder in Z1 Plane, Elliptical Cylinder in z, Plane.

Substituting Equation (A-4) into Equation (A-ib) results in

2 2
x2  y2

"2" Y2 2 (A-5)

which is the expression for an ellipse in cartesian coordinates where the semi-major

axis, a, is given by c + (1/c) and the semi-minor axis. b, by c - (i/c). The complex

potential function in the zi plane for the circle is given by

4

-- U c e 2  (A-6)
Wz,) = U. zIe 2 + . _ , 0

zI

where 0 is the velocity field potential function and * is the stream function. The fluid

velocity in the z, plane is determined from the complex derivative,
.i.3

__ -i.! U cil(A7
Ue 2 C2 e2 (A.-
U. e I U1 - IV8
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where ul and v1 are the fluid velocity components in cartesian coordinates. The fluid

velocity in the z2 plane (for the ellipse) is found by the chain rule, thus,
dw dw dz1

- - =u2 - iV2 (A-8)

Combining Equations (A-la),(A-2)and (A-7) results in

aiW U. c 2 (e• I - ,2 1 el,,12) (A-9)
d7Z2  c

2 ei 2 +1

The magnitude of the fluid velocity is found by multiplying the complex velocity by

its conjugate. Using Euler's formula,

eie = cos0 + isin0 (A-10)

and with some algebraic manipulation, the potential velocity of the fluid at the surface

of the ellipse is given by

d, U! c4 (2 + 2cos2O) (A-11)
dA + 1 + 2c cos26

where the bar denotes the complex conjugate. Equation (A-11) is further simplified

using the trigonometric identities

cos20 = cosZO - sin 2  (A-12)

cos20 = 2cos2O - 1

and the relationship between c, a and b,

4c 2 = (a+b)2 (A-13)

Thus the potential velocity is given by

us = U. (I+k) cosO (A-14)
VCOS2e + k4.dinO

The angle, 0, is measured from the x 1 (horizontal) axis. The relationship between 0 and

90



*, the angle measured from the Yi (vertical) axis, is given by

i =--n _ •(A-15)
2

Note that 4 is an angle defined in the zI plane for the circle and is the parametric angle

defined in Section II.A The potential velocity is thus given by

U,( = U (+k) sinO = u (lI+k) (A-16)

sin 2M4 + kVcos41 1I + k2cot2$

91



APPENDIX B - COMPUTER CODE FOR ASYMPTOTIC SHEAR STRESS MODEL

SPROGRAM MIXEDI

STHIS PROGRAM NUMERICALLY SOLVES THE PROBLEM OF MIXED
W CONVECTION CONDENSATION WITH SURFACE TENSION ON AN ELLIPTICAL

SCYLINDER. THE PROBLEM FORMULATION USES THE ASYMPTOTIC SHEAR
SSTRESS APPROXIMATION ANALYSIS METHOD.

STHE PROGRAM USES AN AUTHOR DEVELOPED FORWARD STEPPINGSALGORITHM BASED ON A 4TH ORDER ADAMS PREDICTOR-CORRECTOR
SMETHOD TO SOLVE A 1ST ORDER ORDINARY DIFFERENTIAL EQUATION.

STHIS PROGRAM CAN BE RUN WITH DIMENSIONLESS PARAMETERSS(F,G.P, BO) SPECIFIED OR WHERE THE PARAMETERS ARE CALCULATEDSBASED ON SPECIFIED FLUID PROPERTIES. MODIFICATIONS TO THESPROGRAM (REMOVAL OF UNNECCESSARY STEPS BY "COMMENTING" THE
w STATEMENT OUT OF THE PROGRAM) IS REQUIRED. SPECIFIED FLUID
SPROPERTIES INCLUDE T SAT, T WALL, AND UINF.

SNUMERICAL RESULTS ARE DIRECTED TO AN EXTERNAL DATA FILE.

SMAJOR VARIABLES USED ARE%

THETA PARAMETRIC ANGLESX STREAMNISF LENGTH
DEFF EFFECTIVE DIAMtTER
DEL CONDENSATE FILM THICKNESS
DELND,Z DIMENSIONLESS FILM THICKNESS
F,P,BO, DIMENSIONLESS PARAMETERS
JARPRL
UINF VAPOR FREE STREAM VELOCITY
TS VAPOR SATURATION TEMPERATURE
TW WALL SURFACE TEMPERATURE
DENSL CONDENSATE DENSITY
DENSV VAPOR DENSITY
CONDL CONDENSATE THERMAL CONDUCTIVITY
VISL CONDENSATE VISCOSITY
HFG LATENT HEAT OF VAPORIZATION
NU NUSSELT NUMBER
NUAVG MEAN NU NUMBER
ALPHA HEAT TRANSFER COEFFICIENT
QFLUX HEAT FLUX
A SEMI-MAJOR AXIS
1 •ECCENTRICITY
XFN PARAMETRIC RADIUS
G GRAVITY FUNCTIONSFl VELOCITY FUNCTION
Fll DERIVATIVE, VELOCITY FUNCTIONSF2 PRE!SUP! GRADIENT FUNCTION
F3 SURFAC. ;ENSION FUNCTION

PARAMETER(PIz3.141592654,GRAVz9.807)

REAL Z(0:180000),THETA(0:180000),X(O:180000),H,DEFF,Xl,X2,X3,
+NUAVGNU,NUORE,UINF,TS,TW,TL,DENSL,VISL,TG,CONDL,HFG,BZDELND,
+DEL,QFLUX,A,K,RE,SUM,XFN,ALPHA,ALPHAO,DQFLUX,F,PHI,
+A1,A2,A3,A4,AS,A6,A7,AS,A9,AlO,Al1,TFPSAT,TB,TC,TD,R,TE,DENSV,
÷SIGML,FCN,P,C1,C2,CZFCO,FCI,FC2,FCS,ZP1,ZP2,ZP3,ZP4,BO,
+C4,C5,F21,F31,NUCOEFF

INTEGER N,J,JJIC

COMMON /GEOM/A,K,DEFF/PARAM/F,BO,P

EXTERNAL FCNXFN,G,G1,Fl,F1,,F2,F5

OPEN(20,FILEz'/MIXED1 OUTPUT Al',STATUS='OLD')
OPEN(50,FILE='/DEL2 DATA AI',STATUS='OLD')
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FILE: MIXEDi FORTRAN A

SINPUT FLUID PARAMETERS

PRINTM,'ELLIPSE OF THE FORM (X1B)**2+(Y/A)**2=1'
PRINTX,'INPUT "A" DIMENSION (M)?'
READ*, A
PRINT*,'INPUT r SAT AND T WALL (K)?'
READiE,rS,TW
PRINT3E,'INPUT ANGLE STEP SIZE (DEGREES)?'
READ*, H
PRINT*E,'STEP SIZE, H ,

C PRINT3E,'INPUT UINF''
C READ3E,UINF

PRINT3EP'INPUT K?'
READE, K
PRINT*,'INPUT F?'
READ*, F

N=18O/H+l
H2PI/180 .*H

~x DETERMINE FLUID PROPERTIES X X

A1:15.49217901
A2Z-5 .6783717693
A3=1 .4597584637
A4: 13.87700 06 08
-r-80 .887673591

A6=123 .56883468
A7=-188 .321212064
A8=660 .91763485
A9=-1382 .4740091
A10=1300 .1040184
Al1=-449 .39571976
TF:TS/1000.
PSAT=1 .E+6*EXP(Al+A2/TF+A3*LOG(TF)+TF*A4+A5MTF*2+A6*TF**3+A7*

*TF*4+A83ETF**+A9*TF**6+A1 0*TF3OE7+A113ETF**8)
TB=1500 ./TS
TC2Z.53EL0(1 .-EXP(-TB))
TD:.0015/(l.+.0001*TS)-.000942*EXF(TB+TC)3ESQRTC1./TB)-.0O04882*TB
R=461 .51
TE=Z.*PSAT/(R3ETS)
DENSV=TE/(1.+SQRT(1 .+Z.3TD)ETE))
TL:(ZA(TW+TS)/3.
DENSL=1./(.0012674-TL*(Z.02915E-6-TL313.8333E-9))
VISL=2.414E-53E10**(247 .8/(TL-140.))
TG=TL/27 3.15
CONDL:-.924O7+TG3E(2.83g5-TG*(1.80O7-TG*( .b2577-TGN.07344)))
HFG=3468920.-TS*E(5707.4-TS3*(11.5562-TS*.0133103))
SIGML:(-.0O03*(TL-273.15)**32-.138*(TL-273.15)+75.6)/1000.

SDETERMINE THETA(I),X(I), DEFF ******X
SUSE SIMPSON'S RULE TO NUMERICALLY INTEGRATE ALONG SURFACE ~

THETA(O)=0.
XCO)=O.

DO 10, I=1,N
THETAC I)=THETA( I-1)+H
Xl=A*XFN(THETA(I-1))
X2=A3EXFN( (THETA( I-1)+THETA(I) )*.5)
X3=A*XFN(THETA(I))

10 CONTINUE

DEFF=2 . X(N)/PI

SDETERMINE DIMENSIONLESS PARAMETERS AS REQUIRED

C F:VISL*iDEFF*HFG*GRAV/(UINF**ZXCONDL3E(TS-TW))

UINF:SQRT(VISL*HFG*GRAV/( F3CONDL3E(TS-TW)))

93



FILE: MIXEDI FORTRAN A

C P=DENSV*HFG*VISL/(DENSL*CONDL*(TS-TW))
C 3O:SIGML/( DEISL3GRAV3*DEFF**2)

RE: DENSL3EDEFF3EUINF/V ISL

PRINT*, 'COMPLETED THETA,X,DEFF'

WRITE(ZO,5000) 'SAT. TEMP. (K) =',TS,'WALL TEMP.= ,W
+'11/BO =',BO,'P = ',P,'F =',F,'UINF (M/S) =',UINF,'REL =',RE
WRITE(20,5010) '"A" LENGTH CM) =',A,I"'K" ECCENTRICITY 1K
+'DEFF (M) z ,DEFF
WRITE(2O,50Z0)

W DETERMINE INITIAL CONDITION, ZO

B2=SQRT(UINF*EDENSL/(DEFF*VISL))
THETA(0z1 . E-9
X(O)1 . E-9
CALL DRV(FZ,O.,F21)
CALL DRV(F3,O.,F31)
Cl:(23EF*O1(0.)+DEFF/A3EP*F21+3*(DEFF/A)**2*F*hDO3F31)/3.
C2=Fll(O.)
C3=-2 . *A3XFN 0. )/DEFF

ALPHAO=CONDL*B2/Z( 0)
SUM~O.

SDETERMINE DIMENSIONLESS FILM THICKNESS, Z
SADAMS-MOULTON PREDICTOR/CORRECTOR ALGORITHM

FCO=FCN(THETA(O),Z(O))
ZPI=Z( 0)+H3EFCO
Z(1)=Z(O),H/2.3E(FCO+FCN(THETAC1),ZP1))
FC1=FCN(THETA(l),Z(1))
ZP2=Z(1 )4H/2.*3(3 .3FC1-FCO)
Z(2)=Z(1)+H/12.3E(5iEFCN(THETA(2),ZP2)+g.*FC1-FCO)
FC2=FCN(THETA(2) ,Z(Z))
ZP3 Z(2 )+H, 12.*3( 23. 31FC2-16 . 3FC1+5.*3FCO )

FCS:FCN(THETA(3) ,Z(3))

DO 50,I:4,tN
ZP4=Z(1-1,+H/24.31C55.31FC3-59.3FC2+37.31FC1-9.31FCO)
Z(I)=ZCI-1)+H/720.31(251.31FCN(THETA(I),ZP4)+646.31FC3-264.31

"+ FCZ+106.XFC1-19.31FCO)
FCO=FC1
FC1=FCZ
FC2: FC3
FC3=FCN(THETA(l),Z(I))
C4=(2.31F3G(THETA(I))+DEFF/A1P31FZ(THETA(I))+3.31(DEFF/A)3131Z3F

"+ 31B03F3(THETA(l)))31Z(I)3013+Fl(THETA(I))31Z(I)
C5=C4+Fl(THETA(I) )3Z(I)
IFCC4.LE.O.) THEN

PRINT31,'C4 LIMIT'
IC=I
GO TO 60

ENDIF
IF(C5.LE.O.) THEN

PRINT31,'C5 LIMIT'
IC=I
GO TO 60

ENDIF
50 CONTINUE

IC=N-1

60 PRINT31,'COMPLETED Z DETERMINATION'

3111 DETERMINE HEAT TRANSFER PROPERTIES 333333333

J:o
JJ=O
DO 1OO,1=1,IC

DELNDzZ( I)
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FILE: MIXED1 FORTRAN A

DEL=DELND/BZ
ALPHA=CONDL/DEL
SUM=SUM+( ALPHAO)(A*XFNi(THETA( I-1) )+ALPHA*A3EXFN(THETA( I)) )3H3E.5
AL PHAO =AL PHA
IF(JJ.EQ.J) THEN

QFLUX=ALPHANE(TS-TW)
NU=D EFF' DEL
DQFLUX=1 ./DELND
WRITE(20,503O) THETA(I)ml8O./PI,X(I)*2./CDEFF*PI),

+ DELiE1000.,QFLUX/IJOO.,DELND,DQFLUX,NU
WRITE(30,M) X(I)*E2./(DEFFXPI),DELND
J=J+1 ./180 .*N+l

ENDIF
JJ=I+1

100 CONTINUIý

WRITE(20,5030) THETA(IC)*E180./PI,X(IC)3EZ./(DEFFi*PI),DEL3E10OO.,
4QFLUX/1000. ,DELNID,DQFLUX,DEFF/DEL
WRITtý(30,*) XCIC)x2./(DEFF*PI),DELND

NUAVG=SUM*2/CPI3ECONDL)

WRITEC2O,5040) 'NU/SQRT(RE) ='.NUAVG/SQRT(RE),'NUAVG = ',NUAVG

5000 FORMAT(lX,T5,70('3E' // 1AX,T5,'HEAT TRANSFER PROPERTIES' // ZC1X,
+TIO,A17,F6.2 / ),4(lX,T1O,A17,E9.3 /))

5010 FORMAT( / 1X,T5,'ELLIPSE GEOMETRY' // 3(1X,T1O,A19..F6.4./)
5020 FORMAT( / 1X,T7,'THETA',Tl5,'DIM X'.T25,'DEL',T3Z,'HT FLUX'.

+T41,'DIM DEL',T52,!:IM',T58,'NUSS #1 / T7,'(DEG)'.T25,'(MM)',T32,
+'CKW/M2)',T50,'HT FLUX' / T6,7('='),T15.6('='),T23,7('='),T32,
+71(='),T41 .7('' ),T50,7(''1),T58,6C '') /)

5030 FORMATU1; 6,F7.3,T15,F6 .4,T23,F7 .4,T32,E8.2,T41,F7.4,T50,F7.4,
+T58,E9.3 )

5040 'FORMAT( // 3(1X,T5,A17,F8.4/)
6000 FORMAT(MXF'..1,F10.3,F7.3)

END

FUNCTION XFN(PHI)

THIS FUNCTION SUBPROGRAM Is USED TO DETERMINE STREAMWISE LENGTH
AS A FUNCTION OF THETA. XFN REPRESENTS PARAMETRIC RADIUS.

REAL XFN,PHI,A,K,DEFF
COMMON /GEOM/A,I(,DEFF
XFN:SQRT((K*2+.25*E((K3(32-1.)3ESIN(2WPHI))3OEZ)/((COS(PHI))**2

++(K*SIN(PHI))**2E))
END

FUNCTION G(PHI)

34 THIS FUNCTION SUBPROGRAM REPRESENTS THE GRAVITY FUNCTION.

REAL G.PHI,AK,DEFF
COMMON /GEOM/A, K, DEFF
G=SIN(PHI)/SQRT((SIN(PHI))34*Z+(K34COS(PHI))**2)
END
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FILE: MIXEDI FORTRAN A

FUNCTION GI(PHI)

N THIS FUNCTION SUBPROGRAM REPRESENTS THE STREAMNISE DERIVATIVE
N OF THE GRAVITY FUNCTION.

REAL G1,PHI,A,K,DEFF
COMMON/GEOM/A,K,DEFF
Gl=KM*ZNCOSCPHI)/SQRT(C(SIN(PHI))**2+(KNCOS(PHI))*N2)**3)
END

FUNCTION F1(PHI)

N THIS FUNCTION SUBPROGRAM REPRESENTS THE VAPOR VELOCITY
N FUNCTION

REAL F1,PHI,A,K,DEFF
COMMON /GEOM/A,K,DEFF
F1=(1.+K)NSIN(PHI)/SQRT((SIN(PHI))NNZ+(K3COS(PHI))NNZ)
END

FUNCTION FI1(PHI)

N THIS FUNCTION SUBPROGRAM REPRESENTS THE STREAMNISE DERIVATIVE
N OF THE VAPOR VELOCITY FUNCTION.

REAL F11,PHI,A,KDEFF
COMMON/GEOM/A,K,DEFF
F1z:(1.+K)NK**2COS(PHI)/SQR1(((SIN(PHI))NN2+(KNCOS(PHI))*NZ)NN3)
END

FUNCTION FZ(PHI)

x THIS FUNCTION SUBPROGRAM REPRESENTS THE PRESSURE GRADIENT
N FUNCTION.

REAL FZ,PHIA,KDEFF
EXTERNAL XFN
COMMON/GEOM/A,K,DEFF
FZ=((1.+K)*K)NNZNSIN(ZNPHI)/((SIN(PHI))*NZ+(KNCOS(PHI))NN2)

+'XFN(PHI)
END

FUNCTION F3(PHI)

N THIS FUNCTION SUBPROGRAM REPRESENTS THE SURFACE FUNCTION.

96



FILE: MIXEDi FORTRAN A

REAL F3,PHI,A,IC,DEFF
EXTERNAL XFN

r ~COMMON/GEOM/A,K, DEFF
F3:KM(1.-Kxx2)3ESIN(2*PHI)/SQRT(((SIN(PHI))3Ex2+(KxCOScPHI)),n2)

+wx5 )/XFNC PHI)
ENDA

FUNCTION FCNCPHIIZ)

* THIS FUNCTION SUBPROGRAM IS USED IN A PROBLEM-SOLVER
* SUBROUTINE TO SOLVE THE O.D.E.

DZ/DX = F(PHIZ)

REAL FZ1, FS1PPHIDFCN1,FCNZPFCNPAPK,DEFF, F,BO,P

COMMON /GEOM/A, K, DEFF/PARAM/F, BO,P

EXTERNAL XFN,G,G1,F1,F11,FZ,FS

CALL DRV(FZ,PHIF21)
CALL DRV(F3,PHI,F31)

FCN1=C2.EFWG(PHI)+DEFF/A*PWFZ(PHI)+3.M(DEFF/A)WWZKF3BOWF3(PHI))
+*Z*3E3+F1(PHI )*Z
FCNZ:Z.3EAXXFN(FHI)/DEFF-(2.3EF*G1CPHI)+DEFF/AXPXFZ1+3.*(DEFF/A)MWZ

+*F3EBOIEFS1)*ZX*4/3.-F11(PHI)3EZIXZ
FCN=FCN2' FCN1

END

SUBROUTINE DRVCFN,PHI, FN1)

* THIS SUBROUTINE NUMERICALLY DIFFERENTIATES A FUNCTION.

REAL FN.PHI,FN1,EPS
FN1:(FN(PHI+1 .E-6)-FN(PHI--1.E-6))/Z.E-6
RETURN
END
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APPENDIX C -COMPUTER CODE FOR TWO-PHASE BOUNDARY LAYER

MODEL
N PROGRAM VAPBL1

N THIS PROGRAM NUMERICALLY SOLVES THE PROBLEM OF MIXED
N CONVECTION CONDENSATION WITH SURFACE TENSION ON AN ELLIPTICAL
N CYLINDER. THE PROBLEM FORMULATION USES THE SOLUTION OF THE
N TWO-PHASE BOUNDARY LAYER EQUATIONS FOR THE CONDENSATE AND VAPOR.

N THE PROGRAM USES AN IMSL NUMERICAL PROBLEM SOLVER, DIVPAG,
N TO SOLVE A 1ST ORDER ORDINARY DIFFERENTIAL EQUATION. THE
N PROBLEM SOLVER IS WRITTEN IN DOUBLE PRECISION WHILE THE MAIN
N PROGRAM IS IN SINGLE PRECISION. THE MAIN PROGRAM MUST BE
N COMPILED IN DOUBLE PRECISION (AUTO DOUBLE).

N THIS PROGRAM CAN BE RUN WITH DIMENSIONLESS PARAMETERS
N (FG) SPECIFIED OR WHERE THE PARAMETERS ARE CALCULATED
N BASED ON SPECIFIED FLUID PROPERTIES. MODIFICATIONS TO THE
N PROGRAM (REMOVAL OF UNNECCESSARY STEPS BY "COMMENTING" THE
N STATEMENT OUT OF THE PROGRAM) IS REQUIRED. SPECIFIED FLUID
N PROPERTIES INCLUDE T SAT, T WALL, AND UINF.

N IF THE ALGORITHM HAS DIFFICULTY LOCATING THE VAPOR SEPARATION
N POINT, THEN THE PROGRAM NEEDS TO BE MODIFIED TO INPUT THE
N PARAMETRIC AND, PHI, FOR THE SEPARATION POINT.

N NUMERICAL RESULTS ARE DIRECTED TO AN EXTERNAL DATA FILE.

N MAJOR VARIABLES USED ARE:

NPHI PARAMETRIC ANGLE
NX STREAMNISE LENGTH
NDEFF EFFECTIVE DIAMETER
NDEL CONDENSATE FILM THICKNESS
NDELND DIMENSIONLESS FILM THICKNESS
NZ DIMENSIONLESS VAPOR MOMENTUM THICKNESS
NF,JARPRL DIMENSIONLESS PARAMETERS
SUINF VAPOR FREE STREAM VELOCITY
NTS VAPOR SATURATION TEMPERATURE
NTN WALL SURFACE TEMPERATURE
N DENSL CONDENSATE DENSITY
NDENSV VAPOR DENSITY
NCONDL CONDENSATE THERMAL CONDUCTIVITY
NVISL CONDENSATE VISCOSITY
NVISV VISCOSITY OF VAPOR
N HFG LATENT HEAT OF VAPORIZATION
NNU NUSSELT NUMBER
NREV VAPOR REYNOLDS NUMBER
NRE TWO-PHASE REYNOLDS NUMBER
NNUAVO MEAN NU NUMBER
NALPHA HEAT TRANSFER COEFFICIENT
NQFLUX HEAT FLUX
NA SEMI-MAJOR AXIS
N K ECCENTRICITY
N XFN PARAMETRIC RADIUS
NG GRAVITY FUNCTION
NFl VELOCITY FUNCTION
NFll DERIVATIVE, VELOCITY FUNCTION
NF2 PRESSURE GRADIENT FUNCTION
NF3 SURFACE TENSION FUNCTION
NTAU INTERFACIAL SHEAR
NKAPPA PRESSURE GRADIENT FORM PARAMETER
NKAPPAA SUCTION FORM PARAMETER

PARAMETER(PI=3.141592654,GRAVZ9.807,NEQ=2,NEQlzl,NPARAM25O)

REAL PHI(O:180000),DEL(O:180000),X(O:18OOOO).A,TS,TW,
+H,A1,AZ,AS,A4,A5,A6,A7,A8,A9,AlO,All,TF,PSAT,TBTC,TD,R,TE,DENSV,
+TL,DENSL,VISL,VISV,TG,CONDL,HFG,SIGML,F,K,X1,X2,XS,DEFF,UINF,
+REV,RE,JARPRL,DELOO,DELO,ZO,TAU,DTAU,FDELO,DFDELO,DELl,ZlALPHAO,
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FILE: VAPBL FORTRAN A

+SUM,AA(l,l),FCN,FCNJ,HINITPARAM(NPARAM),KAPPA,KAPPAA.DKAPPA,
+TOL,XEND,XBEG,YC2),DDEL,DZ,Yl(l),NU,NUAVG,NUORE,DKAPPAA,'AO,DXO,
+DELND,DELL,ALPHA,QFLUX,DQFLUX,D2UPHI,DUPHI,UPHI

INTEGER t4,JJ,II,IDO,IMETH

COMMON /GEOM/A, K, DEFF/PARAM/JARPRL, F

EXTERNAL ZFN,DELFNXFN,G,G1,Fl,F11,NUSSELT,DRV,FCN,FCNJ,IVPAG,
+SSET

OPEN(ZO,FILE=I/VAPORI OUTPUT Al',STATUS='OLD')
OPEN(30,FILE='/VAPOR2 OUTPUT A1',STATUS:'OLD')

PRINT*,'ELLIPSE OF THE FORM (X/B)Z*+(Y/A)*NZ:1#
PRINT*,'INPUT "A" DIMENSION (MW?
READ*,A
PRINT*,IINPUT T SAT AND T WALL (K)?'
READ*,TS,TW
PRINT*,'INPUT ANGLE STEP SIZE (DEGREES)!
READ*, H
PRINT*,'STEP SIZE, H = ,

C PRINT*,'INPUT PHI AT SEPARATION?'
C READ*,PHIS

PRINT*P 'INPUT UINFVt

READE, UINF
PRINT*,'INPUT K?'
READ*, K

C PRINT3E,'INPUT G?'
C READ3EPJARPRL

N=180/H+l
PRINTE, 'N-1'I,N-1
H=PI/180 .*H

w ~DETERMINE FLUID PROPERTIES

Al=15.49217901
A2z-5.678 37 176 93
A3=1 .4597584637
A4h13.877 00 0608
A5=-80 .887673591
A6 :123.56883468
A7=-188 .321212064
Ag=66O .91763485
A9=-1382. 4740091
A10=1300 .1040184
A11=-449 .39571976
TF=TS/1000.
PSAT=1 .E+6*EXP(A1+A2/TFA3*LOG(TF)+TF*A4+A5MTF**2+A6*TF**3,A7*
+T*4A*F*+9T*6AOT*7AlT*8
TB=1500 ./TS
TC:2.53*LOGC1.-EXPC-TB))
TD.05(..01T).092EPT+C*QTl/B-0082T
R=461 .51
TE=2. *PSAT/(R*TS)
DENSV=TE/(1 .+SQRT(1 .+2.3TD*TE))
TL=(2.*TW+TS)/S.
DENSL=1./( .001Z674-TL3N(2.02915E-6-TL3E3.8333E-9))
VISL:2.414E-53E10**(247.8,(TL-14O.))
VISV=-4.478415E-6+TS*(5.0216E-8~1 .579E-11*TS)
TG=TL/27 3.15
C0NDL:-.92407+TG*(Z.8395-TG3E(1.8007-TG*( .52577-TG*.07344)))
HFG:3468920.-TS3EC57O7.4-TSNC11.5562-TS*.0133103))
SIGML=(-.0003*(TL-Z73.15)3EW2-.138K(TL-273.15),75.6)/1000.

~W DETERMINE PHI(I),X(I),DEFF
~W USES SIMPSON'S RULE TO NUMERICALLY INTEGRATE ALONG SURFACE

PHI(O)=O.
X(0):0.
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FILE: VAPBL FORTRAN A

DO 10, I=1,N

X3=XFN(PHI(I))

10 CONTINUE

DEFF=2 .3X(N)/PI
PRINT*, 'COMPLETED DE DETERMINATION, DE=',DEFF

S DIMENSIONLESS PARAMETER DETERMINATION

F=VISL3EDEFF*IHFG/(CONDLWUINFW*E23(TS-TW))
REV=UINF*DENSV*DEFF/VISV
RE UI NF3EDENS LM3DEFF/V ISL

PRINTM, COMPLETED PARAMETER DETERMINATION'

WRITE(20,5000) 'SAT. TEMP. (K) = 'PTS,'WALL TEMP.= ,W
+IF z',F,'UINF (M/S) ='.UINF,'G =',JARPRL
WRITE(20,5010) '"A" LENGTH CM) ='.A,'"K" ECCENTRICITY 'A,K
+'DEFF (M) =',DEFF

~* DETERMINE INITIAL VALUES OF Z AND DEL
SUSES INTIAL VALUE OF DEL FROM SHEKRILADZE-GOMELAURI
SFOR MIXED CONVECTION AS STARTING POINT TO FIND Z THEN
SREDETERMINES DEL FOR THE PREDICTED VALUE OF Z USING ~
SNEWTON'S METHOD, CHECKS FOR CONVERGENCE AND ITERATES

DELOO=SQRT(.75*K/F3ECSQRTCC((.+K)/K)*3*2+16.*F*A/(3.*DEFF))
+-(1 .+K)/K))

DEL ODEL 00
ZO=(-.0735*EXFN(O.)3EJARPRL/DEFF/Fll(O.)/DELO+SQRT(( .07353E
+XFN(O.)*JARPRL/DEFF/Fll(O.)/DELO)**2+.0735*EXFN(O.)/DEFF/
*F11CO. )))X3E2

UPHIzF1(O.)
DUPHI=Fl1(O.)
CALL DRV(Fl1,O.,D2UPHI)
XO=XFNC 0.)
CALL DRV(XFN,0.,DXO)

20 KAPPA=DEFF/XO*DUPHI*ZO
30 KAPFAA=.0682+. 174*JARPRL*SQRTCZO)/DELO

DTAU=6.44*SQRT(KAPPAiEKAPPAA+KAPPAA*2)*DUPHI/SQRTCZO)+3.22*UPHI
+*KAPPAA*DKAPPA/SQRT( ZO)/SQRT(CKAPPA3EKAPPAA+KAPPAA**32)

FDELO=XO/DEFF-F,3.*G1(0. ,*DELO**4-DTAU*DELOM3*3/(4.*JARPRL)
DFDELO=-4.*F3EG1(0.)3DELO*3/3.-3.3EDTAU*DELO*O*2/(4.*JARPRL)
DELlzDEL0-FDELO/DFDELO
IF((ABS(DEL1-DELQ).GT.(.0013(DELO)).AND.(FDELO.GT.l.E-7)) THEN

DELO=DELl
GO TO 30

ENDIF

Zl:(-.07353EXFN(O.)*JARPRL/(DEFFWFll(O.)*IDEL1)+SQRT((.0735*
+XFN(O.)*JARPRL/CDEFF*Fll(O.)*DELI))**2+.0735*XFN(O.)/(DEFF*

IF (CABSCDELI-DELOO).GT.C.0O1*DELOO)).OR.(ABS(Zl-ZO).GT.(.0O1*
+ZO))) THEN

ZO=Zl
DELOOzDELl
DELO=OEL1
GO TO 20

ENDIF

DELC0)zDELl
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ALPHAO=1 ./DEL(0)
SUMzo.
PRINT3E,'COMPLETED Z(O),DEL(O) DETERMINATION',' Z=',ZI,
+'DEL=',DEL(O)

S EVALUATION OF Z(I) AND DEL(I)
SUSES IMSL ROUTINE DIVPAG

HINIT=1.E-'.
IMETH=2
CALL SSET(NPARAM,O.0,PARAM,l)
PARAM( 1 )HINIT
PARAM( 12)=IMETH
XBEG=PHI(O)
Y(1)=Zl
Y(2)=DEL(O)
TOL=1 E-3
I DO~1
DO 100,1=1,N-1

C IF(PHI(I).GT.PHIS) GO TO 190
XEND=PHI(I)
CALL DIVPAG(IDO,NEQ,FCN,FCNJ,AA,XBEG,XEND,TOL,PARAM,Y)

KAPPAA=.0682+. 174*EJARPRL*SQRT(Y(1) )/YC2)
TAU=6.44*EFl(PHI(I))3*SQRT(KAPPA*KAPPAA+KAPPAA**2)/SQRT(Y(l))
WRITE(30,3E) 'PHI=',PHICI)*E180/PI,'TAU=',TAU
I11I

SCHECK FOR VAPOR BOUNDARY LAYER SEPARATION

IF(TAU.LE.0.) GO TO 190
100 CONTINUE

190 PRINT3ESEPARATION ANGLE AT PHI=',PHICII)*180./PI
PRINT3E, TAU'I,TAU, 'DEL'I,DEL(II)

CALL DIVPAG(IDO,NEQ,FCN,FCNJ,AA,XBEG,XEND,TOL,PARAM,Y)

~x USES A SIMPLE NUSSELT ANALYSIS TO COMPUTE FILM THICKNESS
~M DOWNSTREAM OF THE SEPARATION POINT. PROBLEM SOLVER IS

IMSL DIVPAG

IF(II.NE.(N-1)) THEN
XBEG=PHI (II)
I DO 1
Yl(l)=DEL(II)
DO 2OO, IsII+1,N-1

XEND=PHI (I)
CALL DIVPAG(IDO,NEQ1,NUSSELT,FCNJ,AA,XBEG,XEND,TOL,.PARAM

+ ,Y1)
DEL(I):Y1(1)

200 CONTINUE
ENDIF
ID0z3
CALL DIVPAOCIDO,NEQ1,NUSSELT,FCNJ,AA,XBEG,XEND,TOL,PARAM,Y1)

PRINT*, 'COMPLETED upI, DELCI) DETERMINATION'
WRITECZO,5050) PHI(II)*180./PI
WRITE(20,5020)

~N DETERMINE HEAT TRANSFER PROPERTIES N W

JJ~o
DO 300,1=1,N-1

DELND=DEL( I)
DELL=DELND3ESQRT(VISUEDEFF/(DENSL3EUINF))
ALPHA=1 ./DEL(I)
SUM:SUM+(ALPHAONXFNCPHI(I-1))+ALPHA*XFN(PHI(I)))MH*.5
AL PHAO0 ALP HA
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FILE: VAPEL FORTRAN A

IF(CJJ.EQ.I) .OR.CJJ.EQ.0)) THEN
QFLUXZALPHA3ECTS-TW)
NU=DEFF/DELL
DQFLUXfl ./DELND
JJ=JJ+1O ./180 .*N+1
WRITEC2O,5030) PHI(I)N1SO/PI,X(I)3E2/CDEFFEPI),DELL

+ ENDF 1000,QFLUX/1000,DELND,DQFLUX,NU

300 CONTINUE

WRITE(20,5030) PHICN-1)*180./PI,X(N-1)NZ./(DEFFNPI),DELL*1000.,
+QFLUX/1000. ,DELND,DQFLUX,DEFF'DELL
WRITEC3O,*) XCN-1)NZ./(DEFF3GPI),DELND

NUAVG=SUMNZ, (PINDEFF)

WRITE(ZO.5O40) 'NU/SQRTCRE) = ',NUAVG/SQRT(RE)

5000 FORMAT(1X,TS,70C'N') // 1X,T5,'HEAT TRANSFER PROPERTIES' // ZCX,
+T1O,A17,F6.Z / ),5C1X,T1O,A17,E9.3 /))

5010 FORMAT( / 1X,T5,'ELLIPSE GEOMETRY' // 3C1X,T1O,Alg,F6.4 /)
502O FORMATC / 1X,T7,'THETA',T15,'DIM X',T25,'DEL',T32,'HT FLUX',,

+T41,'DIM DEL',T52,'DIM',T58,'NUSS I' / T7,'(DEG)',T25,'(MM)',T32,
*'(KW4/MZ)',T50, 'HT FLUX' / T6,7('=' ),T15,6C''1),T23,7(':'),TZZ,
+7( ''),T41,7C''1),TSO,7(''1),T58,6C '') /)

5030 FORMAT(1X,T6,F7.3,T15,F6 .4,T23,F7 .4,T3Z,EB.Z,T41,F7 .4,T5O,F7.4,
+T53,F9.1)

5040 FORMAT( // SCIX,TS,A17,FB.4 1
5050 FORMAT(1X,T6,'VAPOR SEPARATION AT PHI =',F6.2)

END

FUNCTION XFN(PHI)

NTHIS FUNCTION SUBPROGRAM IS USED TO DETERMINE STREAMNISE LENGTH
NAS A FUNCTION OF PHI.

REAL XFN,PHil,A,K,DEFF
COMMON /GEOM/A, K, DEFF
XFN:A*SQRT((KMXZ+.25M((KXMZ-1.)MSINCZMPHIYINXZ)/((COSCPHI))**2

++CKXSINCPHI) )MMZ))
END

FUNCTION G(PHI)

N GRAVITY FUNCTION

REAL G,PHI,A,K,DEFF
COMMON /GEOM/A, K, DEFF
O=SIN(PHI)/SQRT((SIN(PHIT)MMZ2+(KXCOS(PHI))MNZ)
END

FUNCTION G1(PHI)

NSTREAMNISE DERIVATIVE OF GRAVITY FUNCTION
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REAL G1,PHI,A,K,DEFF
0 ~COMMON/GEOM/A, K, DEFF

G1:K**3234CO5(PHI)/SQRT(C(SIN(PHI))**Z+(KXCOS(PHI))**32)*433)
END

FUNCTION FlCPHI)

34 VAPOR VELOCITY FUNCTION

REAL F1,PHI,A,K,DEFF
COMMON 'GEOM/A, K.DEFF
F1=(1.+K)34SIN(PHI)/SQRTC(SIN(PHI))34x2+CK34COSCPHI))w*2)
END

FUNCTION F11(PHI)

34 STREAMNISE DERIVATIVE OF VELOCITY FUNCTION

REAL F11,PHI,A,K,DEFF
COMMON./GEOM/A, K, DEFF
F11C1l.+K)34K**3234CO5PH1X'SQRTC((SINCPHI))**24ZiK34COS(PHI))**32)**33)
END

FUNCTION DELFNCPHI,Z,DEL,DZ)

34 STREAMNISE DERIVATIVE OF CONDENSATE FILM THICKNESS

REAL DELFNPHI,Z,DEL,DZI.DELFN1,DELFNZ,DELFN3,X, FF1,FF11,FF1ZDXFN
,A, K,DEFF, JARPRL, F, KAPPA, KAPPAA, XX, FKAPPA

EXTERNAL XFNF1,F11,G,G1

COMMON/GEOM/A, K, DEFF/PARAM/JARPRL, F

IF(PHI.EQ.0.D+O) THEN
DEL FN=O. D+0

EL SE
FF1=F1CPHI)
FF11=F11(PHI)
CALL DRV(F11,PHI,FF12)
X=XFN( PHI)
CALL DRV(XFN,PHI,DXFN)
KAPPM=DEFF34FF1 13Z/X
KAPPAA .0682+. 17h4JARPRL34SQRTCZ)/DEL
XX=KAPPAA34KAPPA+KAPPAA**32
FKAP PA SQRT(CXX )

DELFN1:.SO534KAPPAA34DEFF34FF1NFF1134DEL3434U(JARPRL34FKAPPA34X3SQRT(Z))
++(7 .OOSSE-2)34(2.XKAPPAAtKAPPA)NFF134DEL34NZ/CFKAPPA34Z)-.8O534FKAPPA34
+FF134DEL*34S/CJARPRLNZX34l.5)
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DELFN2=F*G(PHI)wDEL**3.3.223EFFJwFKAPPA*DEL**2/(JARPRL*SQRT(Z))
+-. 14007X(Z.EKAPPAA+KAPPA)3EFF1*DEL/FKAPPA

DELFN3=X/DEFF-F*G1(PHI)WDEL**4/3.-1.61*FKAPPA3EFF11*DEL3E*3/(JARP1.
+3ESQRr(Z) )- .BO53KAPPAA*DEFF*FF1WFF1ZWSQRT(Z)WDELn*3/CJARPRLXFKAPPA*
+X)+. .S5XKAPPAA3EDEFFiEDXFNIEFF1IEFF113ESQRT(Z)3EDEL**Z'(JARPRL3EFKAPPA3(
+X**3Z)

DEL FN=(DEL FN3-DEL FN1XDZ)/ DEL FN2
ENDIF
END

FUNCTION ZFN(PHI,Z,DEL)

STREAMNISE DERIVATIVE OF VAPOR MOhIL,.TUM THICKNESS PARAMETER

REAL ZFN,PHI,Z, DEL, DEFF,A,K,JARPRL, F

EXTERNAL XFN
EXTERNAL Fl
EXTERNAL Fli

COMMON/GEOM/A,K,DEFF/PARAM/JARPRL, F

IFCPHI.EQ.O.D+O) THEN
ZFN=O. D+O

EL SE
ZFNl=C.441W(l.-Z.AJARPRLXSQRT(Z)/DEL)-6.XDEFFIEFllCPHI)*Z/XFNCPHI))
+*XFN(PHI)/Fl(PHI)/DEFF
ENDIF

END

SUBROUTINE NUSSELT(NEQ,PHI.,Y,YPRIME)

STREAMWISE DERIVATIVE OF CONDENSATE FILM THICKNESS USING
A NUSSELT ANALYSIS DOWNSTREAM OF VAPOR SEPARATION POINT.

INTEGER NEQ
REAL PHI,Y(NEQ),YPRIME(NEQ),ADKSDEFF,JARPRLPF

EXTERNAL XFN,G,G1

COMMON/GEOM/A, K, DEFF/tPARAM/JARPRL, F

YPRIME(l)=(XFNCPHI),DEFF-F/3.KY(l)XK4KGl(PHI))/CF*G(PHI)MY(l)**S)

RETURN
END

SUBROUTINE DRV(FN,PHI,FN1)

X SUBROUTINE TO NUMERICALLY DIFFERENTIATE A FUNCTION
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REAL FN,PHI,FN1IEPS

RETURN
END

SUBROUTINE TAUFN(PHI,Z,DEL,DZ,DDELTAU,DTAU)

SUBROUTINE TO DETERMINE THE INTERFACIAL SHEAR STRESS AND
ITS STREAMWISE DERIVATIVE.

REAL PHI,ZDEL,DXFN,DZ,DDEL,KAPPA,KAPPA1,KAPPAA,DKAPPA,

+DKAPPA1, DKAPPAA, TAU, DTAU, A, K,DEFF, JARPRL, F

EXTERNAL XFN,F1Fl, 1

CUMMON/GEOM/A,K, DEFF/PARAM/JARPRL, F

CALL DRV(F11,PHI,P1Z)
CALL DRV(XFN,PHI,DXFN)

KAPPA=DEPFF1 1 (PHI )XZ/XPNC PHI)
KAPPAl =JARPRL*SQRT(Z)/DEL
KAPPAA .0682+. 174*KAPPA1
DKAPPA=DEFF/XFN(PHI)31(Z*FIZ+F11CPHI)XDZ)-DEPF/CXPN(PHI))*X2W

+F11(PHI)XZXDXFN
DKAPPA1=JARPRL*( . 53DELXDZ-Z3EDDEL)/CSQRTCZ)3EDELfl2)
DKAPFAA=.174*DKAPPA1

TAU=6 .441F11(PHI )JSQRT( (KAPPAAMKAPPA+KAPPAAflZ)/Z)
DTAU=6.44*(((KAPPAA*KAPPA+KAPPAA*WZ)*F11(PHI)+.5*F1(PHI)m

+(KAPPAA3EDKAPPA+(Z . KAPPAA+KAPPA)*DKAPPAA) )/SQRT(Z3E(KAPPAAM
+KAPPA+KAPPAA**2) )-.SE(KAPPAA3EKAPPA+KAPPAAM*2)3EFl (PHI)IEDV
+SQRTCZ*W3M(KAPPAA*KAPPA+KAPPAA**Z)))

RETURN
END

SUBROUTINE FCN(NEQ,X,Y,YPRIME)

SUBROUTINE TO INPUT DIFFERENTIAL EQUATION TO BE SOLVED
BY THE PROBLEM SOLVER.

INTEGER NEQ

REAL X,YCNEQ),YPRIMECNEQ)

EXTERNAL ZFN, DEL PH

YPRIME(1)=ZFN(X,Y(l),Y(2))
YPRIMECZ)=DELFN(X,Y(1) ,Y(Z) ,YPRIME(1))

RETURN
END

SUBROUTINE FCNJCNEQ,X,Y,DYPDY)
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X SUBROUTINE REQUIRED BY PROBLEM SOLVER, NO FUNCTION IN ANALYSIS

INTEGER NEQ

REAL X,Y(NEQ),DYPDYC3)

RETURN
END
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